Spaces:
Sleeping
Sleeping
import gradio as gr | |
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline | |
import torch | |
def get_model_name(language): | |
"""Map language choice to the corresponding model.""" | |
model_mapping = { | |
"English": "microsoft/Phi-3-mini-4k-instruct", | |
"Arabic": "ALLaM-AI/ALLaM-7B-Instruct-preview" | |
} | |
return model_mapping.get(language, "ALLaM-AI/ALLaM-7B-Instruct-preview") # Default to Arabic model | |
def load_model(model_name): | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
model = AutoModelForCausalLM.from_pretrained( | |
model_name, | |
device_map=device, | |
torch_dtype="auto", | |
trust_remote_code=True, | |
) | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
generator = pipeline( | |
"text-generation", | |
model=model, | |
tokenizer=tokenizer, | |
return_full_text=False, | |
max_new_tokens=500, | |
do_sample=False | |
) | |
return generator | |
def generate_text(prompt, language): | |
model_name = get_model_name(language) # Get the model based on language choice | |
generator = load_model(model_name) | |
messages = [{"role": "user", "content": prompt}] | |
output = generator(messages) | |
return output[0]["generated_text"] | |
# Create Gradio interface | |
demo = gr.Interface( | |
fn=generate_text, | |
inputs=[ | |
gr.Textbox(lines=2, placeholder="Enter your prompt here..."), | |
gr.Dropdown( | |
choices=["English", "Arabic"], # Users choose the language, not the model name | |
label="Choose Language", | |
value="Arabic" # Default to Arabic (ALLAM model) | |
) | |
], | |
outputs=gr.Textbox(label="Generated Text"), | |
title="Text Generator", | |
description="Enter a prompt and generate text in English or Arabic using AI models.", | |
examples=[ | |
["Give me information about Lavender.", "English"], | |
["أعطني معلومات عن نبات اللافندر", "Arabic"] | |
] | |
) | |
demo.launch() |