Spaces:
Sleeping
Sleeping
File size: 1,969 Bytes
37d987e 2188d3f 37d987e 2188d3f 37d987e 2188d3f 37d987e 2188d3f 37d987e 2188d3f 37d987e 2188d3f 37d987e 2188d3f 37d987e 2188d3f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 |
import gradio as gr
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
import torch
def get_model_name(language):
"""Map language choice to the corresponding model."""
model_mapping = {
"English": "microsoft/Phi-3-mini-4k-instruct",
"Arabic": "ALLaM-AI/ALLaM-7B-Instruct-preview"
}
return model_mapping.get(language, "ALLaM-AI/ALLaM-7B-Instruct-preview") # Default to Arabic model
def load_model(model_name):
device = "cuda" if torch.cuda.is_available() else "cpu"
model = AutoModelForCausalLM.from_pretrained(
model_name,
device_map=device,
torch_dtype="auto",
trust_remote_code=True,
)
tokenizer = AutoTokenizer.from_pretrained(model_name)
generator = pipeline(
"text-generation",
model=model,
tokenizer=tokenizer,
return_full_text=False,
max_new_tokens=500,
do_sample=False
)
return generator
def generate_text(prompt, language):
model_name = get_model_name(language) # Get the model based on language choice
generator = load_model(model_name)
messages = [{"role": "user", "content": prompt}]
output = generator(messages)
return output[0]["generated_text"]
# Create Gradio interface
demo = gr.Interface(
fn=generate_text,
inputs=[
gr.Textbox(lines=2, placeholder="Enter your prompt here..."),
gr.Dropdown(
choices=["English", "Arabic"], # Users choose the language, not the model name
label="Choose Language",
value="Arabic" # Default to Arabic (ALLAM model)
)
],
outputs=gr.Textbox(label="Generated Text"),
title="Text Generator",
description="Enter a prompt and generate text in English or Arabic using AI models.",
examples=[
["Give me information about Lavender.", "English"],
["أعطني معلومات عن نبات اللافندر", "Arabic"]
]
)
demo.launch() |