Spaces:
Sleeping
Sleeping
File size: 7,590 Bytes
c71b3b8 24c00be c71b3b8 24c00be c71b3b8 ec2628d c71b3b8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 |
import os
import shutil
import streamlit as st
from dotenv import load_dotenv
from llama_index.core import (
VectorStoreIndex,
Settings,
StorageContext,
load_index_from_storage,
)
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
from llama_index.llms.groq import Groq
import pandas as pd
from llama_index.core import Document
PERSIST_DIR = "./storage"
EMBED_MODEL = "./all-MiniLM-L6-v2"
LLM_MODEL = "llama3-8b-8192"
CSV_FILE_PATH = "shl_assessments.csv"
GROQ_API_KEY = st.secrets["GROQ_API_KEY"] or os.getenv("GROQ_API_KEY")
def load_data_from_csv(csv_path):
"""Loads assessment data from a CSV file."""
try:
df = pd.read_csv(csv_path)
required_columns = ["Assessment Name", "URL", "Remote Testing Support",
"Adaptive/IRT Support", "Duration (min)", "Test Type"]
if not all(col in df.columns for col in required_columns):
raise ValueError(f"CSV file must contain columns: {', '.join(required_columns)}")
return df.to_dict(orient="records")
except FileNotFoundError:
raise FileNotFoundError(f"Error: CSV file not found at {csv_path}")
except ValueError as e:
raise ValueError(f"Error reading CSV: {e}")
except Exception as e:
raise Exception(f"An unexpected error occurred while loading CSV data: {e}")
def load_groq_llm():
try:
api_key = st.secrets.get("GROQ_API_KEY") or os.getenv("GROQ_API_KEY")
except KeyError:
raise ValueError("GROQ_API_KEY not found in Streamlit secrets.")
return Groq(model=LLM_MODEL, api_key=api_key, temperature=0.1)
def load_embeddings():
return HuggingFaceEmbedding(model_name="all-MiniLM-L6-v2")
def build_index(data):
"""Builds the vector index from the provided assessment data."""
return HuggingFaceEmbedding(model_name=EMBED_MODEL)
Settings.llm = load_groq_llm()
documents = [Document(text=f"Name: {item['Assessment Name']}, URL: {item['URL']}, Remote Testing: {item['Remote Testing Support']}, Adaptive/IRT: {item['Adaptive/IRT Support']}, Duration: {item['Duration (min)']}, Type: {item['Test Type']}") for item in data]
index = VectorStoreIndex.from_documents(documents)
index.storage_context.persist(persist_dir=PERSIST_DIR)
return index
def load_chat_engine():
"""Loads the chat engine from the persisted index."""
if not os.path.exists(PERSIST_DIR):
return None
Settings.embed_model = load_embeddings()
Settings.llm = load_groq_llm()
storage_context = StorageContext.from_defaults(persist_dir=PERSIST_DIR)
index = load_index_from_storage(storage_context)
return index.as_chat_engine(chat_mode="context", verbose=True)
def reset_index():
"""Resets the persisted index and chat history."""
try:
shutil.rmtree(PERSIST_DIR, ignore_errors=True)
st.success("Knowledge index reset successfully!")
st.session_state.messages = [{"role": "assistant", "content": "Hello! I'm your SHL assessment assistant. How can I help you?"}]
st.session_state["index_built"] = False
if 'chat_engine' in st.session_state:
del st.session_state['chat_engine']
return None
except Exception as e:
st.error(f"Error resetting index: {str(e)}")
return None
def main():
st.set_page_config(
page_title="SHL Assessment Chatbot",
layout="wide",
initial_sidebar_state="collapsed"
)
st.markdown("""
<style>
:root {
--primary: #6eb5ff;
--background: #000000;
--card: #f0f2f6;
--text: #ffffff;
--background: #000000;
--card: #f0f2f6;
--text: #ffffff;
}
.stApp {
background-color: var(--background) !important;
color: var(--text) !important;
}
.stMarkdown, .stTextInput, .stChatMessage, .stChatInputContainer, .css-10trblm, .css-1cpxqw2 {
color: var(--text) !important;
}
.stApp {
background-color: var(--background) !important;
color: var(--text) !important;
}
.stMarkdown, .stTextInput, .stChatMessage, .stChatInputContainer, .css-10trblm, .css-1cpxqw2 {
color: var(--text) !important;
}
.stApp {
background-color: var(--background) !important;
color: var(--text) !important;
}
.stMarkdown, .stTextInput, .stChatMessage, .stChatInputContainer, .css-10trblm, .css-1cpxqw2 {
color: var(--text) !important;
}
</style>
""", unsafe_allow_html=True)
load_dotenv()
os.environ["STREAMLIT_SERVER_ENABLE_FILE_WATCHER"] = "false"
os.environ["TORCH_DISABLE_STREAMLIT_WATCHER"] = "1"
os.environ["LLAMA_INDEX_DISABLE_OPENAI"] = "1"
if "messages" not in st.session_state:
st.session_state.messages = [{
"role": "assistant",
"content": "Hello! I'm your SHL assessment assistant. How can I help you?"
}]
if "index_built" not in st.session_state:
st.session_state["index_built"] = False
if not st.session_state["index_built"]:
try:
with st.spinner("Loading data and building index..."):
assessment_data = load_data_from_csv(CSV_FILE_PATH)
if assessment_data:
build_index(assessment_data)
st.session_state['chat_engine'] = load_chat_engine()
st.session_state["index_built"] = True
else:
st.error("Failed to load assessment data. Please check the CSV file.")
except Exception as e:
st.error(f"Error initializing application: {e}")
# --- Chat Interface ---
chat_engine = st.session_state.get('chat_engine')
if chat_engine:
for msg in st.session_state.messages:
icon = "π€" if msg["role"] == "assistant" else "π€"
with st.chat_message(msg["role"]):
st.markdown(f"<span style='color: white;'>{icon} {msg['content']}</span>", unsafe_allow_html=True)
if prompt := st.chat_input("Ask me about SHL assessments..."):
st.session_state.messages.append({"role": "user", "content": prompt})
with st.chat_message("user"):
st.markdown(f"<span style='color: white;'>π€ {prompt}</span>", unsafe_allow_html=True)
with st.chat_message("assistant"):
try:
# Add formatting instructions to the prompt
formatted_prompt = f"""
{prompt}
Please provide a list of all matching SHL assessments (minimum 1, maximum 10).
For each matching assessment, follow this exact format:
β’ Assessment Name: [Name]
URL: [URL]
Remote Testing Support: [Yes/No]
Adaptive/IRT Support: [Yes/No]
Duration: [Duration in minutes]
Test Type: [Test Type]
If there are no matches, clearly state that. Respond in a clean, readable bullet-point format.Do not use any "+" signs. Do not return JSON or markdown tables. Do not bold anything.
"""
response = chat_engine.chat(formatted_prompt)
st.markdown(f"<span style='color: white;'>π€ {response.response}</span>", unsafe_allow_html=True)
st.session_state.messages.append({"role": "assistant", "content": response.response})
except Exception as e:
st.error(f"An error occurred during chat: {e}")
else:
st.info("π¬ Chat is ready! Ask me anything about SHL assessments.")
if __name__ == "__main__":
main()
|