Ipshitaa commited on
Commit
24c00be
·
1 Parent(s): 453fe7d

updated main.py

Browse files
Files changed (1) hide show
  1. main.py +2 -14
main.py CHANGED
@@ -16,11 +16,9 @@ from llama_index.core import Document
16
 
17
  PERSIST_DIR = "./storage"
18
  EMBED_MODEL = "./all-MiniLM-L6-v2"
19
- EMBED_MODEL = "./all-MiniLM-L6-v2"
20
- EMBED_MODEL = "./all-MiniLM-L6-v2"
21
  LLM_MODEL = "llama3-8b-8192"
22
  CSV_FILE_PATH = "shl_assessments.csv"
23
- GROQ_API_KEY = st.secrets["GROQ_API_KEY"] or os.getenv["GROQ_API_KEY"] or os.getenv("GROQ_API_KEY")
24
 
25
 
26
  def load_data_from_csv(csv_path):
@@ -43,7 +41,6 @@ def load_data_from_csv(csv_path):
43
  def load_groq_llm():
44
  try:
45
  api_key = st.secrets.get("GROQ_API_KEY") or os.getenv("GROQ_API_KEY")
46
- api_key = st.secrets.get("GROQ_API_KEY") or os.getenv("GROQ_API_KEY")
47
  except KeyError:
48
  raise ValueError("GROQ_API_KEY not found in Streamlit secrets.")
49
 
@@ -52,13 +49,11 @@ def load_groq_llm():
52
 
53
 
54
  def load_embeddings():
55
- return HuggingFaceEmbedding(model_name="all-MiniLM-L6-v2")
56
- return HuggingFaceEmbedding(model_name="all-MiniLM-L6-v2")
57
 
58
  def build_index(data):
59
  """Builds the vector index from the provided assessment data."""
60
  return HuggingFaceEmbedding(model_name=EMBED_MODEL)
61
- return HuggingFaceEmbedding(model_name=EMBED_MODEL)
62
  Settings.llm = load_groq_llm()
63
 
64
  documents = [Document(text=f"Name: {item['Assessment Name']}, URL: {item['URL']}, Remote Testing: {item['Remote Testing Support']}, Adaptive/IRT: {item['Adaptive/IRT Support']}, Duration: {item['Duration (min)']}, Type: {item['Test Type']}") for item in data]
@@ -144,16 +139,9 @@ def main():
144
  "role": "assistant",
145
  "content": "Hello! I'm your SHL assessment assistant. How can I help you?"
146
  }]
147
- st.session_state.messages = [{
148
- "role": "assistant",
149
- "content": "Hello! I'm your SHL assessment assistant. How can I help you?"
150
- }]
151
  if "index_built" not in st.session_state:
152
  st.session_state["index_built"] = False
153
 
154
-
155
-
156
-
157
  if not st.session_state["index_built"]:
158
  try:
159
  with st.spinner("Loading data and building index..."):
 
16
 
17
  PERSIST_DIR = "./storage"
18
  EMBED_MODEL = "./all-MiniLM-L6-v2"
 
 
19
  LLM_MODEL = "llama3-8b-8192"
20
  CSV_FILE_PATH = "shl_assessments.csv"
21
+ GROQ_API_KEY = st.secrets["GROQ_API_KEY"] or os.getenv("GROQ_API_KEY")
22
 
23
 
24
  def load_data_from_csv(csv_path):
 
41
  def load_groq_llm():
42
  try:
43
  api_key = st.secrets.get("GROQ_API_KEY") or os.getenv("GROQ_API_KEY")
 
44
  except KeyError:
45
  raise ValueError("GROQ_API_KEY not found in Streamlit secrets.")
46
 
 
49
 
50
 
51
  def load_embeddings():
52
+ return HuggingFaceEmbedding(model_name="all-MiniLM-L6-v2")
 
53
 
54
  def build_index(data):
55
  """Builds the vector index from the provided assessment data."""
56
  return HuggingFaceEmbedding(model_name=EMBED_MODEL)
 
57
  Settings.llm = load_groq_llm()
58
 
59
  documents = [Document(text=f"Name: {item['Assessment Name']}, URL: {item['URL']}, Remote Testing: {item['Remote Testing Support']}, Adaptive/IRT: {item['Adaptive/IRT Support']}, Duration: {item['Duration (min)']}, Type: {item['Test Type']}") for item in data]
 
139
  "role": "assistant",
140
  "content": "Hello! I'm your SHL assessment assistant. How can I help you?"
141
  }]
 
 
 
 
142
  if "index_built" not in st.session_state:
143
  st.session_state["index_built"] = False
144
 
 
 
 
145
  if not st.session_state["index_built"]:
146
  try:
147
  with st.spinner("Loading data and building index..."):