File size: 20,065 Bytes
f8df6da 10e9b7d 7d65c66 3c4371f 10e9b7d d59f015 e80aab9 3db6293 e80aab9 1315ca6 d906d04 f8df6da 9efc00d 1315ca6 f8df6da b24f46d f8df6da 1315ca6 f8df6da 1315ca6 f8df6da 1315ca6 f8df6da 63d3162 f8df6da 1315ca6 f8df6da 1315ca6 f8df6da 1315ca6 f8df6da 1315ca6 f8df6da 1315ca6 f8df6da a4c9095 f8df6da 1315ca6 26865cf f8df6da d49e11a f8df6da 1315ca6 d906d04 f8df6da f4c6b51 4021bf3 b90251f 31243f4 7d65c66 b177367 3c4371f 7e4a06b 1ca9f65 3c4371f 7e4a06b 3c4371f 7d65c66 3c4371f 7e4a06b 31243f4 e80aab9 b177367 31243f4 3c4371f 31243f4 b177367 36ed51a c1fd3d2 3c4371f 7d65c66 31243f4 eccf8e4 31243f4 7d65c66 31243f4 3c4371f 31243f4 e80aab9 31243f4 3c4371f 7d65c66 3c4371f 7d65c66 31243f4 e80aab9 b177367 7d65c66 3c4371f 31243f4 7d65c66 31243f4 7d65c66 31243f4 3c4371f 31243f4 b177367 7d65c66 3c4371f 31243f4 e80aab9 7d65c66 31243f4 e80aab9 7d65c66 e80aab9 31243f4 e80aab9 3c4371f e80aab9 31243f4 e80aab9 3c4371f e80aab9 3c4371f e80aab9 7d65c66 3c4371f 31243f4 7d65c66 31243f4 3c4371f e80aab9 31243f4 7d65c66 31243f4 e80aab9 31243f4 0ee0419 e514fd7 81917a3 e514fd7 e80aab9 7e4a06b e80aab9 31243f4 e80aab9 9088b99 7d65c66 e80aab9 31243f4 e80aab9 3c4371f 7d65c66 3c4371f 7d65c66 3c4371f 7d65c66 3c4371f 7d65c66 3c4371f 31243f4 3c4371f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 |
from __future__ import annotations
from functools import lru_cache
from pathlib import Path
from typing import Optional, Union, List
import re
import tempfile
import requests
import urllib.parse as _urlparse
import os
import gradio as gr
import inspect
import pandas as pd
# (Keep Constants as is)
# --- Constants ---
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
import openai
# ‑‑‑ smol‑agents base imports (provided by the framework) ‑‑‑
from smolagents.tools import PipelineTool, Tool
from smolagents import (
CodeAgent,
DuckDuckGoSearchTool,
WikipediaSearchTool,
OpenAIServerModel,
)
# ---------------------------------------------------------------------------
# Speech‑to‑Text (OpenAI Whisper)
# ---------------------------------------------------------------------------
class SpeechToTextTool(PipelineTool):
"""Transcribe *local* audio files via OpenAI Whisper (cached)."""
default_checkpoint = "openai/whisper-1"
name = "transcriber"
description = (
"Send a local audio file to OpenAI Whisper (model **whisper‑1**) and "
"return the plain‑text transcript."
)
inputs = {
"audio": {
"type": "string",
"description": "Absolute or relative path to a local audio file.",
}
}
output_type = "string"
def __call__(self, audio: str) -> str: # noqa: D401
return self._transcribe(audio)
@staticmethod
@lru_cache(maxsize=64)
def _transcribe(audio_path: str) -> str:
path = Path(audio_path).expanduser().resolve()
if not path.is_file():
raise FileNotFoundError(f"No such audio file: {path}")
with path.open("rb") as fp:
resp = openai.audio.transcriptions.create(
file=fp,
model="whisper-1",
response_format="text",
)
return resp
# ---------------------------------------------------------------------------
# Excel → Markdown helper
# ---------------------------------------------------------------------------
class ExcelToTextTool(Tool):
"""Render an Excel worksheet as a Markdown table (GitHub flavour)."""
name = "excel_to_text"
description = (
"Convert an Excel sheet to Markdown. Accepts sheet name *or* index "
"(as string). Returns a GitHub‑style table without index column."
)
inputs = {
"excel_path": {
"type": "string",
"description": "Path to the Excel file (.xlsx / .xls).",
},
"sheet_name": {
"type": "string",
"nullable": True,
"description": (
"Worksheet name or 0‑based index *as string* (optional; "
"default=first sheet)."
),
},
}
output_type = "string"
@lru_cache(maxsize=32)
def forward(self, excel_path: str, sheet_name: Optional[str] = None) -> str: # type: ignore[override]
path = Path(excel_path).expanduser().resolve()
if not path.is_file():
return f"Error: Excel file not found at {path}"
import importlib.util as _imp
if not _imp.find_spec("pandas"):
return "Error: pandas library not available in this environment."
import pandas as pd
try:
sheet: Union[int, str] = 0
if sheet_name and sheet_name.strip():
sheet = int(sheet_name) if sheet_name.isdigit() else sheet_name
df = pd.read_excel(path, sheet_name=sheet)
if hasattr(pd.DataFrame, "to_markdown"):
return df.to_markdown(index=False)
from tabulate import tabulate # pragma: no cover
return tabulate(df, headers="keys", tablefmt="github", showindex=False)
except Exception as exc: # pragma: no cover – user‑visible error
return f"Error reading Excel file: {exc}"
# ---------------------------------------------------------------------------
# YouTube Question‑Answer Tool
# ---------------------------------------------------------------------------
class YouTubeQATool(PipelineTool):
"""Answer questions about the spoken content of a YouTube video."""
default_checkpoint = "openai/gpt-4o"
name = "youtube_qa"
description = (
"Given a YouTube URL and a natural‑language *question*, return an answer "
"based solely on the video transcript (no hallucinations)."
)
inputs = {
"url": {
"type": "string",
"description": "Full YouTube video URL or just the watch ID.",
},
"question": {
"type": "string",
"description": "Question about the video content (English / French).",
},
}
output_type = "string"
_TRANSCRIPT_CACHE: dict[str, str] = {}
@staticmethod
def _extract_video_id(url: str) -> str:
if len(url) == 11 and "/" not in url:
return url
parsed = _urlparse.urlparse(url)
if parsed.hostname in ("youtu.be",):
return parsed.path.lstrip("/")
if parsed.hostname and "youtube" in parsed.hostname:
qs = _urlparse.parse_qs(parsed.query)
if "v" in qs:
return qs["v"][0]
return parsed.path.split("/")[-1]
raise ValueError("Could not parse YouTube video ID from URL")
@classmethod
def _get_transcript(cls, video_id: str) -> str:
if video_id in cls._TRANSCRIPT_CACHE:
return cls._TRANSCRIPT_CACHE[video_id]
try:
from youtube_transcript_api import YouTubeTranscriptApi # type: ignore
except ModuleNotFoundError:
return "Error: youtube‑transcript‑api library not installed."
try:
segments: List[dict] = YouTubeTranscriptApi.get_transcript(video_id)
except Exception as exc:
return f"Error fetching transcript: {exc}"
text = " ".join(seg["text"] for seg in segments)
cls._TRANSCRIPT_CACHE[video_id] = text
return text
def forward(self, url: str, question: str) -> str: # type: ignore[override]
try:
vid = self._extract_video_id(url)
except ValueError as e:
return str(e)
transcript = self._get_transcript(vid)
if transcript.startswith("Error"):
return transcript
max_chars = 15000
if len(transcript) > max_chars:
transcript = transcript[:max_chars] + " …(truncated)…"
import openai
system = (
"You are a meticulous assistant. Answer the user's question about "
"the provided YouTube transcript. If the transcript lacks the "
"information, reply 'I don't know based on the transcript.'"
)
messages = [
{"role": "system", "content": system},
{"role": "user", "content": f"Transcript:\n{transcript}"},
{"role": "user", "content": f"Question: {question}"},
]
try:
resp = openai.chat.completions.create(
model="gpt-4o",
messages=messages,
temperature=0.2,
max_tokens=256,
)
return resp.choices[0].message.content.strip()
except Exception as exc:
return f"Error generating answer: {exc}"
# ---------------------------------------------------------------------------
# NEW: Extract text from an image (OCR)
# ---------------------------------------------------------------------------
class ExtractTextFromImageTool(Tool):
"""OCR helper using **pytesseract** + **Pillow** (if available)."""
name = "image_ocr"
description = "Extract visible text from a local image file via Tesseract OCR."
inputs = {"image_path": {"type": "string", "description": "Path to an image."}}
output_type = "string"
@lru_cache(maxsize=32)
def forward(self, image_path: str) -> str: # type: ignore[override]
path = Path(image_path).expanduser().resolve()
if not path.is_file():
return f"Error: no such image file {path}"
try:
import pytesseract
from PIL import Image
except ModuleNotFoundError:
return "Error: pytesseract or Pillow not installed."
try:
with Image.open(path) as img:
text = pytesseract.image_to_string(img)
return text.strip() or "(No text detected)"
except Exception as exc:
return f"Error extracting text: {exc}"
# ---------------------------------------------------------------------------
# NEW: Analyze CSV file
# ---------------------------------------------------------------------------
class AnalyzeCSVFileTool(Tool):
"""Quick CSV introspection & basic descriptive stats with pandas."""
name = "csv_analyzer"
description = "Load a CSV file and give column info + summary stats."
inputs = {
"file_path": {"type": "string", "description": "Path to CSV file."},
"query": {"type": "string", "description": "User question (unused for now)."},
}
output_type = "string"
@lru_cache(maxsize=16)
def forward(self, file_path: str, query: str) -> str: # type: ignore[override]
path = Path(file_path).expanduser().resolve()
if not path.is_file():
return f"Error: no such CSV file {path}"
try:
import pandas as pd
except ModuleNotFoundError:
return "Error: pandas not installed."
try:
df = pd.read_csv(path)
desc = df.describe(include="all", datetime_is_numeric=True).T
buf = [f"Loaded CSV with {len(df)} rows × {len(df.columns)} columns", "Columns: " + ", ".join(df.columns), "", "Summary stats:", desc.to_markdown()]
return "\n".join(buf)
except Exception as exc:
return f"Error reading CSV: {exc}"
# ---------------------------------------------------------------------------
# Helper: download attachment (if any)
# ---------------------------------------------------------------------------
def download_file_if_any(base_api_url: str, task_id: str) -> str | None:
url = f"{base_api_url}/files/{task_id}"
try:
resp = requests.get(url, timeout=30)
if resp.status_code == 404:
return None
resp.raise_for_status()
except requests.HTTPError:
raise
filename = task_id
if cd := resp.headers.get("content-disposition"):
if match := re.search(r'filename="([^"]+)"', cd):
filename = match.group(1)
tmp_dir = Path(tempfile.gettempdir(), "gaia_files")
tmp_dir.mkdir(exist_ok=True)
file_path = tmp_dir / filename
file_path.write_bytes(resp.content)
return str(file_path)
# ---------------------------------------------------------------------------
# Minimal agent wired with our custom tools
# ---------------------------------------------------------------------------
class BasicAgent:
_model = OpenAIServerModel(model_id="gpt-4o")
_tools = [
DuckDuckGoSearchTool(),
WikipediaSearchTool(),
SpeechToTextTool(),
ExcelToTextTool(),
YouTubeQATool(),
AnalyzeCSVFileTool(),
ExtractTextFromImageTool()
]
def __init__(self) -> None:
self.agent = CodeAgent(
model=self._model,
tools=self._tools,
add_base_tools=True,
additional_authorized_imports=["numpy", "pandas", "csv", "subprocess"],
)
print("BasicAgent initialized with YouTubeQATool.")
def __call__(self, question: str) -> str: # noqa: D401
print(f"Agent received question (first 80 chars): {question[:80]}…")
answer = self.agent.run(question)
print(f"Agent returning answer: {answer}")
return answer
def run_and_submit_all( profile: gr.OAuthProfile | None):
"""
Fetches all questions, runs the BasicAgent on them, submits all answers,
and displays the results.
"""
# --- Determine HF Space Runtime URL and Repo URL ---
space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code
if profile:
username= f"{profile.username}"
print(f"User logged in: {username}")
else:
print("User not logged in.")
return "Please Login to Hugging Face with the button.", None
api_url = DEFAULT_API_URL
questions_url = f"{api_url}/questions"
submit_url = f"{api_url}/submit"
# 1. Instantiate Agent ( modify this part to create your agent)
try:
agent = BasicAgent()
except Exception as e:
print(f"Error instantiating agent: {e}")
return f"Error initializing agent: {e}", None
# In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public)
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
print(agent_code)
# 2. Fetch Questions
print(f"Fetching questions from: {questions_url}")
try:
response = requests.get(questions_url, timeout=15)
response.raise_for_status()
questions_data = response.json()
if not questions_data:
print("Fetched questions list is empty.")
return "Fetched questions list is empty or invalid format.", None
print(f"Fetched {len(questions_data)} questions.")
except requests.exceptions.RequestException as e:
print(f"Error fetching questions: {e}")
return f"Error fetching questions: {e}", None
except requests.exceptions.JSONDecodeError as e:
print(f"Error decoding JSON response from questions endpoint: {e}")
print(f"Response text: {response.text[:500]}")
return f"Error decoding server response for questions: {e}", None
except Exception as e:
print(f"An unexpected error occurred fetching questions: {e}")
return f"An unexpected error occurred fetching questions: {e}", None
# 3. Run your Agent
results_log = []
answers_payload = []
print(f"Running agent on {len(questions_data)} questions...")
for item in questions_data:
task_id = item.get("task_id")
question_text = item.get("question")
if not task_id or question_text is None:
print(f"Skipping item with missing task_id or question: {item}")
continue
try:
submitted_answer = agent(question_text)
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
except Exception as e:
print(f"Error running agent on task {task_id}: {e}")
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})
if not answers_payload:
print("Agent did not produce any answers to submit.")
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
# 4. Prepare Submission
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
print(status_update)
# 5. Submit
print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
try:
response = requests.post(submit_url, json=submission_data, timeout=60)
response.raise_for_status()
result_data = response.json()
final_status = (
f"Submission Successful!\n"
f"User: {result_data.get('username')}\n"
f"Overall Score: {result_data.get('score', 'N/A')}% "
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
f"Message: {result_data.get('message', 'No message received.')}"
)
print("Submission successful.")
results_df = pd.DataFrame(results_log)
return final_status, results_df
except requests.exceptions.HTTPError as e:
error_detail = f"Server responded with status {e.response.status_code}."
try:
error_json = e.response.json()
error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
except requests.exceptions.JSONDecodeError:
error_detail += f" Response: {e.response.text[:500]}"
status_message = f"Submission Failed: {error_detail}"
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
except requests.exceptions.Timeout:
status_message = "Submission Failed: The request timed out."
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
except requests.exceptions.RequestException as e:
status_message = f"Submission Failed: Network error - {e}"
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
except Exception as e:
status_message = f"An unexpected error occurred during submission: {e}"
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
# --- Build Gradio Interface using Blocks ---
with gr.Blocks() as demo:
gr.Markdown("# Basic Agent Evaluation Runner")
gr.Markdown(
"""
**Instructions:**
1. Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ...
2. Log in to your Hugging Face account using the button below. This uses your HF username for submission.
3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
---
**Disclaimers:**
Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions).
This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async.
"""
)
gr.LoginButton()
run_button = gr.Button("Run Evaluation & Submit All Answers")
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
# Removed max_rows=10 from DataFrame constructor
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
run_button.click(
fn=run_and_submit_all,
outputs=[status_output, results_table]
)
if __name__ == "__main__":
print("\n" + "-"*30 + " App Starting " + "-"*30)
# Check for SPACE_HOST and SPACE_ID at startup for information
space_host_startup = os.getenv("SPACE_HOST")
space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup
if space_host_startup:
print(f"✅ SPACE_HOST found: {space_host_startup}")
print(f" Runtime URL should be: https://{space_host_startup}.hf.space")
else:
print("ℹ️ SPACE_HOST environment variable not found (running locally?).")
if space_id_startup: # Print repo URLs if SPACE_ID is found
print(f"✅ SPACE_ID found: {space_id_startup}")
print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
else:
print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")
print("-"*(60 + len(" App Starting ")) + "\n")
print("Launching Gradio Interface for Basic Agent Evaluation...")
demo.launch(debug=True, share=False) |