File size: 20,065 Bytes
f8df6da
 
 
 
 
 
 
 
 
10e9b7d
 
7d65c66
3c4371f
10e9b7d
d59f015
e80aab9
3db6293
e80aab9
1315ca6
d906d04
f8df6da
9efc00d
1315ca6
f8df6da
 
 
 
 
 
 
 
 
 
 
 
b24f46d
f8df6da
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1315ca6
f8df6da
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1315ca6
f8df6da
 
1315ca6
f8df6da
63d3162
f8df6da
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1315ca6
f8df6da
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1315ca6
f8df6da
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1315ca6
f8df6da
 
 
 
 
 
 
 
 
 
 
 
1315ca6
 
f8df6da
 
 
 
 
1315ca6
f8df6da
 
a4c9095
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f8df6da
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1315ca6
26865cf
 
f8df6da
 
 
d49e11a
f8df6da
 
 
1315ca6
d906d04
f8df6da
 
 
 
 
 
 
f4c6b51
4021bf3
b90251f
31243f4
 
 
 
7d65c66
b177367
3c4371f
7e4a06b
1ca9f65
3c4371f
7e4a06b
3c4371f
7d65c66
3c4371f
7e4a06b
31243f4
 
e80aab9
b177367
31243f4
 
 
3c4371f
31243f4
b177367
36ed51a
c1fd3d2
3c4371f
7d65c66
31243f4
eccf8e4
31243f4
7d65c66
31243f4
 
3c4371f
 
31243f4
e80aab9
31243f4
 
3c4371f
 
7d65c66
3c4371f
7d65c66
31243f4
 
e80aab9
b177367
7d65c66
 
3c4371f
31243f4
 
 
 
 
 
 
7d65c66
 
 
31243f4
 
7d65c66
31243f4
 
3c4371f
31243f4
 
b177367
7d65c66
3c4371f
31243f4
e80aab9
7d65c66
31243f4
e80aab9
7d65c66
e80aab9
 
31243f4
e80aab9
 
3c4371f
 
 
e80aab9
 
31243f4
 
e80aab9
3c4371f
e80aab9
 
3c4371f
e80aab9
7d65c66
3c4371f
31243f4
7d65c66
31243f4
3c4371f
 
 
 
 
e80aab9
31243f4
 
 
 
7d65c66
31243f4
 
 
 
e80aab9
 
 
 
31243f4
0ee0419
e514fd7
 
 
81917a3
e514fd7
 
 
 
 
 
 
 
e80aab9
 
7e4a06b
e80aab9
31243f4
e80aab9
9088b99
7d65c66
 
e80aab9
31243f4
 
 
e80aab9
 
 
3c4371f
7d65c66
3c4371f
7d65c66
 
3c4371f
 
7d65c66
3c4371f
7d65c66
 
 
 
 
 
 
 
 
3c4371f
 
31243f4
3c4371f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
from __future__ import annotations

from functools import lru_cache
from pathlib import Path
from typing import Optional, Union, List
import re
import tempfile
import requests
import urllib.parse as _urlparse
import os
import gradio as gr
import inspect
import pandas as pd

# (Keep Constants as is)
# --- Constants ---
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"

import openai

# ‑‑‑ smol‑agents base imports (provided by the framework) ‑‑‑
from smolagents.tools import PipelineTool, Tool
from smolagents import (
    CodeAgent,
    DuckDuckGoSearchTool,
    WikipediaSearchTool,
    OpenAIServerModel,
)

# ---------------------------------------------------------------------------
# Speech‑to‑Text (OpenAI Whisper)
# ---------------------------------------------------------------------------
class SpeechToTextTool(PipelineTool):
    """Transcribe *local* audio files via OpenAI Whisper (cached)."""

    default_checkpoint = "openai/whisper-1"
    name = "transcriber"
    description = (
        "Send a local audio file to OpenAI Whisper (model **whisper‑1**) and "
        "return the plain‑text transcript."
    )
    inputs = {
        "audio": {
            "type": "string",
            "description": "Absolute or relative path to a local audio file.",
        }
    }
    output_type = "string"

    def __call__(self, audio: str) -> str:  # noqa: D401
        return self._transcribe(audio)

    @staticmethod
    @lru_cache(maxsize=64)
    def _transcribe(audio_path: str) -> str:
        path = Path(audio_path).expanduser().resolve()
        if not path.is_file():
            raise FileNotFoundError(f"No such audio file: {path}")

        with path.open("rb") as fp:
            resp = openai.audio.transcriptions.create(
                file=fp,
                model="whisper-1",
                response_format="text",
            )
        return resp


# ---------------------------------------------------------------------------
# Excel → Markdown helper
# ---------------------------------------------------------------------------
class ExcelToTextTool(Tool):
    """Render an Excel worksheet as a Markdown table (GitHub flavour)."""

    name = "excel_to_text"
    description = (
        "Convert an Excel sheet to Markdown. Accepts sheet name *or* index "
        "(as string). Returns a GitHub‑style table without index column."
    )

    inputs = {
        "excel_path": {
            "type": "string",
            "description": "Path to the Excel file (.xlsx / .xls).",
        },
        "sheet_name": {
            "type": "string",
            "nullable": True,
            "description": (
                "Worksheet name or 0‑based index *as string* (optional; "
                "default=first sheet)."
            ),
        },
    }
    output_type = "string"

    @lru_cache(maxsize=32)
    def forward(self, excel_path: str, sheet_name: Optional[str] = None) -> str:  # type: ignore[override]
        path = Path(excel_path).expanduser().resolve()
        if not path.is_file():
            return f"Error: Excel file not found at {path}"

        import importlib.util as _imp
        if not _imp.find_spec("pandas"):
            return "Error: pandas library not available in this environment."
        import pandas as pd

        try:
            sheet: Union[int, str] = 0
            if sheet_name and sheet_name.strip():
                sheet = int(sheet_name) if sheet_name.isdigit() else sheet_name
            df = pd.read_excel(path, sheet_name=sheet)
            if hasattr(pd.DataFrame, "to_markdown"):
                return df.to_markdown(index=False)
            from tabulate import tabulate  # pragma: no cover
            return tabulate(df, headers="keys", tablefmt="github", showindex=False)
        except Exception as exc:  # pragma: no cover – user‑visible error
            return f"Error reading Excel file: {exc}"


# ---------------------------------------------------------------------------
# YouTube Question‑Answer Tool
# ---------------------------------------------------------------------------
class YouTubeQATool(PipelineTool):
    """Answer questions about the spoken content of a YouTube video."""

    default_checkpoint = "openai/gpt-4o"
    name = "youtube_qa"
    description = (
        "Given a YouTube URL and a natural‑language *question*, return an answer "
        "based solely on the video transcript (no hallucinations)."
    )

    inputs = {
        "url": {
            "type": "string",
            "description": "Full YouTube video URL or just the watch ID.",
        },
        "question": {
            "type": "string",
            "description": "Question about the video content (English / French).",
        },
    }
    output_type = "string"

    _TRANSCRIPT_CACHE: dict[str, str] = {}

    @staticmethod
    def _extract_video_id(url: str) -> str:
        if len(url) == 11 and "/" not in url:
            return url
        parsed = _urlparse.urlparse(url)
        if parsed.hostname in ("youtu.be",):
            return parsed.path.lstrip("/")
        if parsed.hostname and "youtube" in parsed.hostname:
            qs = _urlparse.parse_qs(parsed.query)
            if "v" in qs:
                return qs["v"][0]
            return parsed.path.split("/")[-1]
        raise ValueError("Could not parse YouTube video ID from URL")

    @classmethod
    def _get_transcript(cls, video_id: str) -> str:
        if video_id in cls._TRANSCRIPT_CACHE:
            return cls._TRANSCRIPT_CACHE[video_id]
        try:
            from youtube_transcript_api import YouTubeTranscriptApi  # type: ignore
        except ModuleNotFoundError:
            return "Error: youtube‑transcript‑api library not installed."
        try:
            segments: List[dict] = YouTubeTranscriptApi.get_transcript(video_id)
        except Exception as exc:
            return f"Error fetching transcript: {exc}"
        text = " ".join(seg["text"] for seg in segments)
        cls._TRANSCRIPT_CACHE[video_id] = text
        return text

    def forward(self, url: str, question: str) -> str:  # type: ignore[override]
        try:
            vid = self._extract_video_id(url)
        except ValueError as e:
            return str(e)

        transcript = self._get_transcript(vid)
        if transcript.startswith("Error"):
            return transcript

        max_chars = 15000
        if len(transcript) > max_chars:
            transcript = transcript[:max_chars] + " …(truncated)…"

        import openai

        system = (
            "You are a meticulous assistant. Answer the user's question about "
            "the provided YouTube transcript. If the transcript lacks the "
            "information, reply 'I don't know based on the transcript.'"
        )
        messages = [
            {"role": "system", "content": system},
            {"role": "user", "content": f"Transcript:\n{transcript}"},
            {"role": "user", "content": f"Question: {question}"},
        ]
        try:
            resp = openai.chat.completions.create(
                model="gpt-4o",
                messages=messages,
                temperature=0.2,
                max_tokens=256,
            )
            return resp.choices[0].message.content.strip()
        except Exception as exc:
            return f"Error generating answer: {exc}"

# ---------------------------------------------------------------------------
# NEW: Extract text from an image (OCR)
# ---------------------------------------------------------------------------
class ExtractTextFromImageTool(Tool):
    """OCR helper using **pytesseract** + **Pillow** (if available)."""

    name = "image_ocr"
    description = "Extract visible text from a local image file via Tesseract OCR."
    inputs = {"image_path": {"type": "string", "description": "Path to an image."}}
    output_type = "string"

    @lru_cache(maxsize=32)
    def forward(self, image_path: str) -> str:  # type: ignore[override]
        path = Path(image_path).expanduser().resolve()
        if not path.is_file():
            return f"Error: no such image file {path}"
        try:
            import pytesseract
            from PIL import Image
        except ModuleNotFoundError:
            return "Error: pytesseract or Pillow not installed."
        try:
            with Image.open(path) as img:
                text = pytesseract.image_to_string(img)
            return text.strip() or "(No text detected)"
        except Exception as exc:
            return f"Error extracting text: {exc}"


# ---------------------------------------------------------------------------
# NEW: Analyze CSV file
# ---------------------------------------------------------------------------
class AnalyzeCSVFileTool(Tool):
    """Quick CSV introspection & basic descriptive stats with pandas."""

    name = "csv_analyzer"
    description = "Load a CSV file and give column info + summary stats."
    inputs = {
        "file_path": {"type": "string", "description": "Path to CSV file."},
        "query": {"type": "string", "description": "User question (unused for now)."},
    }
    output_type = "string"

    @lru_cache(maxsize=16)
    def forward(self, file_path: str, query: str) -> str:  # type: ignore[override]
        path = Path(file_path).expanduser().resolve()
        if not path.is_file():
            return f"Error: no such CSV file {path}"
        try:
            import pandas as pd
        except ModuleNotFoundError:
            return "Error: pandas not installed."
        try:
            df = pd.read_csv(path)
            desc = df.describe(include="all", datetime_is_numeric=True).T
            buf = [f"Loaded CSV with {len(df)} rows × {len(df.columns)} columns", "Columns: " + ", ".join(df.columns), "", "Summary stats:", desc.to_markdown()]
            return "\n".join(buf)
        except Exception as exc:
            return f"Error reading CSV: {exc}"


# ---------------------------------------------------------------------------
# Helper: download attachment (if any)
# ---------------------------------------------------------------------------

def download_file_if_any(base_api_url: str, task_id: str) -> str | None:
    url = f"{base_api_url}/files/{task_id}"
    try:
        resp = requests.get(url, timeout=30)
        if resp.status_code == 404:
            return None
        resp.raise_for_status()
    except requests.HTTPError:
        raise

    filename = task_id
    if cd := resp.headers.get("content-disposition"):
        if match := re.search(r'filename="([^"]+)"', cd):
            filename = match.group(1)

    tmp_dir = Path(tempfile.gettempdir(), "gaia_files")
    tmp_dir.mkdir(exist_ok=True)
    file_path = tmp_dir / filename
    file_path.write_bytes(resp.content)
    return str(file_path)


# ---------------------------------------------------------------------------
# Minimal agent wired with our custom tools
# ---------------------------------------------------------------------------
class BasicAgent:
    _model = OpenAIServerModel(model_id="gpt-4o")
    _tools = [
        DuckDuckGoSearchTool(),
        WikipediaSearchTool(),
        SpeechToTextTool(),
        ExcelToTextTool(),
        YouTubeQATool(),
        AnalyzeCSVFileTool(),
        ExtractTextFromImageTool()
    ]

    def __init__(self) -> None:
        self.agent = CodeAgent(
            model=self._model,
            tools=self._tools,
            add_base_tools=True,
            additional_authorized_imports=["numpy", "pandas", "csv", "subprocess"],
        )
        print("BasicAgent initialized with YouTubeQATool.")

    def __call__(self, question: str) -> str:  # noqa: D401
        print(f"Agent received question (first 80 chars): {question[:80]}…")
        answer = self.agent.run(question)
        print(f"Agent returning answer: {answer}")
        return answer


def run_and_submit_all( profile: gr.OAuthProfile | None):
    """
    Fetches all questions, runs the BasicAgent on them, submits all answers,
    and displays the results.
    """
    # --- Determine HF Space Runtime URL and Repo URL ---
    space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code

    if profile:
        username= f"{profile.username}"
        print(f"User logged in: {username}")
    else:
        print("User not logged in.")
        return "Please Login to Hugging Face with the button.", None

    api_url = DEFAULT_API_URL
    questions_url = f"{api_url}/questions"
    submit_url = f"{api_url}/submit"

    # 1. Instantiate Agent ( modify this part to create your agent)
    try:
        agent = BasicAgent()
    except Exception as e:
        print(f"Error instantiating agent: {e}")
        return f"Error initializing agent: {e}", None
    # In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public)
    agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
    print(agent_code)

    # 2. Fetch Questions
    print(f"Fetching questions from: {questions_url}")
    try:
        response = requests.get(questions_url, timeout=15)
        response.raise_for_status()
        questions_data = response.json()
        if not questions_data:
             print("Fetched questions list is empty.")
             return "Fetched questions list is empty or invalid format.", None
        print(f"Fetched {len(questions_data)} questions.")
    except requests.exceptions.RequestException as e:
        print(f"Error fetching questions: {e}")
        return f"Error fetching questions: {e}", None
    except requests.exceptions.JSONDecodeError as e:
         print(f"Error decoding JSON response from questions endpoint: {e}")
         print(f"Response text: {response.text[:500]}")
         return f"Error decoding server response for questions: {e}", None
    except Exception as e:
        print(f"An unexpected error occurred fetching questions: {e}")
        return f"An unexpected error occurred fetching questions: {e}", None

    # 3. Run your Agent
    results_log = []
    answers_payload = []
    print(f"Running agent on {len(questions_data)} questions...")
    for item in questions_data:
        task_id = item.get("task_id")
        question_text = item.get("question")
        if not task_id or question_text is None:
            print(f"Skipping item with missing task_id or question: {item}")
            continue
        try:
            submitted_answer = agent(question_text)
            answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
            results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
        except Exception as e:
             print(f"Error running agent on task {task_id}: {e}")
             results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})

    if not answers_payload:
        print("Agent did not produce any answers to submit.")
        return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)

    # 4. Prepare Submission 
    submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
    status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
    print(status_update)

    # 5. Submit
    print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
    try:
        response = requests.post(submit_url, json=submission_data, timeout=60)
        response.raise_for_status()
        result_data = response.json()
        final_status = (
            f"Submission Successful!\n"
            f"User: {result_data.get('username')}\n"
            f"Overall Score: {result_data.get('score', 'N/A')}% "
            f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
            f"Message: {result_data.get('message', 'No message received.')}"
        )
        print("Submission successful.")
        results_df = pd.DataFrame(results_log)
        return final_status, results_df
    except requests.exceptions.HTTPError as e:
        error_detail = f"Server responded with status {e.response.status_code}."
        try:
            error_json = e.response.json()
            error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
        except requests.exceptions.JSONDecodeError:
            error_detail += f" Response: {e.response.text[:500]}"
        status_message = f"Submission Failed: {error_detail}"
        print(status_message)
        results_df = pd.DataFrame(results_log)
        return status_message, results_df
    except requests.exceptions.Timeout:
        status_message = "Submission Failed: The request timed out."
        print(status_message)
        results_df = pd.DataFrame(results_log)
        return status_message, results_df
    except requests.exceptions.RequestException as e:
        status_message = f"Submission Failed: Network error - {e}"
        print(status_message)
        results_df = pd.DataFrame(results_log)
        return status_message, results_df
    except Exception as e:
        status_message = f"An unexpected error occurred during submission: {e}"
        print(status_message)
        results_df = pd.DataFrame(results_log)
        return status_message, results_df


# --- Build Gradio Interface using Blocks ---
with gr.Blocks() as demo:
    gr.Markdown("# Basic Agent Evaluation Runner")
    gr.Markdown(
        """
        **Instructions:**

        1.  Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ...
        2.  Log in to your Hugging Face account using the button below. This uses your HF username for submission.
        3.  Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.

        ---
        **Disclaimers:**
        Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions).
        This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async.
        """
    )

    gr.LoginButton()

    run_button = gr.Button("Run Evaluation & Submit All Answers")

    status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
    # Removed max_rows=10 from DataFrame constructor
    results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)

    run_button.click(
        fn=run_and_submit_all,
        outputs=[status_output, results_table]
    )

if __name__ == "__main__":
    print("\n" + "-"*30 + " App Starting " + "-"*30)
    # Check for SPACE_HOST and SPACE_ID at startup for information
    space_host_startup = os.getenv("SPACE_HOST")
    space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup

    if space_host_startup:
        print(f"✅ SPACE_HOST found: {space_host_startup}")
        print(f"   Runtime URL should be: https://{space_host_startup}.hf.space")
    else:
        print("ℹ️  SPACE_HOST environment variable not found (running locally?).")

    if space_id_startup: # Print repo URLs if SPACE_ID is found
        print(f"✅ SPACE_ID found: {space_id_startup}")
        print(f"   Repo URL: https://huggingface.co/spaces/{space_id_startup}")
        print(f"   Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
    else:
        print("ℹ️  SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")

    print("-"*(60 + len(" App Starting ")) + "\n")

    print("Launching Gradio Interface for Basic Agent Evaluation...")
    demo.launch(debug=True, share=False)