Update app.py
Browse files
app.py
CHANGED
@@ -1,6 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import os
|
2 |
import gradio as gr
|
3 |
-
import requests
|
4 |
import inspect
|
5 |
import pandas as pd
|
6 |
from smolagents import CodeAgent, DuckDuckGoSearchTool, HfApiModel
|
@@ -9,27 +17,274 @@ from smolagents import CodeAgent, DuckDuckGoSearchTool, HfApiModel
|
|
9 |
# --- Constants ---
|
10 |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
11 |
|
12 |
-
# --- Basic Agent Definition ---
|
13 |
-
# ----- THIS IS WERE YOU CAN BUILD WHAT YOU WANT ------
|
14 |
-
class BasicAgent:
|
15 |
-
def __init__(self):
|
16 |
-
print("BasicAgent initialized.")
|
17 |
|
18 |
-
hf_token = os.getenv("HF_TOKEN")
|
19 |
-
if not hf_token:
|
20 |
-
raise ValueError("HF_TOKEN environment variable is not set.")
|
21 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
self.agent = CodeAgent(
|
23 |
-
|
24 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
|
27 |
-
def __call__(self, question: str) -> str:
|
28 |
-
print(f"Agent received question (first 50 chars): {question[:50]}...")
|
29 |
-
fixed_answer = self.agent.run("You are a helpful assistant answering short factual questions. Answer the question: " + question, max_steps=1)
|
30 |
-
print(fixed_answer)
|
31 |
-
print(f"Agent returning fixed answer: {fixed_answer}")
|
32 |
-
return fixed_answer
|
33 |
|
34 |
def run_and_submit_all( profile: gr.OAuthProfile | None):
|
35 |
"""
|
|
|
1 |
+
from __future__ import annotations
|
2 |
+
|
3 |
+
from functools import lru_cache
|
4 |
+
from pathlib import Path
|
5 |
+
from typing import Optional, Union, List
|
6 |
+
import re
|
7 |
+
import tempfile
|
8 |
+
import requests
|
9 |
+
import urllib.parse as _urlparse
|
10 |
import os
|
11 |
import gradio as gr
|
|
|
12 |
import inspect
|
13 |
import pandas as pd
|
14 |
from smolagents import CodeAgent, DuckDuckGoSearchTool, HfApiModel
|
|
|
17 |
# --- Constants ---
|
18 |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
19 |
|
|
|
|
|
|
|
|
|
|
|
20 |
|
|
|
|
|
|
|
21 |
|
22 |
+
# ‑‑‑ smol‑agents base imports (provided by the framework) ‑‑‑
|
23 |
+
from smol_agents import (
|
24 |
+
Tool,
|
25 |
+
PipelineTool,
|
26 |
+
CodeAgent,
|
27 |
+
DuckDuckGoSearchTool,
|
28 |
+
WikipediaSearchTool,
|
29 |
+
OpenAIServerModel,
|
30 |
+
)
|
31 |
+
|
32 |
+
# ---------------------------------------------------------------------------
|
33 |
+
# Speech‑to‑Text (OpenAI Whisper)
|
34 |
+
# ---------------------------------------------------------------------------
|
35 |
+
class SpeechToTextTool(PipelineTool):
|
36 |
+
"""Transcribe *local* audio files via OpenAI Whisper (cached)."""
|
37 |
+
|
38 |
+
name = "transcriber"
|
39 |
+
description = (
|
40 |
+
"Send a local audio file to OpenAI Whisper (model **whisper‑1**) and "
|
41 |
+
"return the plain‑text transcript."
|
42 |
+
)
|
43 |
+
inputs = {
|
44 |
+
"audio": {
|
45 |
+
"type": "string",
|
46 |
+
"description": "Absolute or relative path to a local audio file.",
|
47 |
+
}
|
48 |
+
}
|
49 |
+
output_type = "string"
|
50 |
+
|
51 |
+
def __call__(self, audio: str) -> str: # noqa: D401
|
52 |
+
return self._transcribe(audio)
|
53 |
+
|
54 |
+
@staticmethod
|
55 |
+
@lru_cache(maxsize=64)
|
56 |
+
def _transcribe(audio_path: str) -> str:
|
57 |
+
path = Path(audio_path).expanduser().resolve()
|
58 |
+
if not path.is_file():
|
59 |
+
raise FileNotFoundError(f"No such audio file: {path}")
|
60 |
+
|
61 |
+
from openai import audio as _audio # late import
|
62 |
+
|
63 |
+
with path.open("rb") as fp:
|
64 |
+
resp = _audio.transcriptions.create(
|
65 |
+
file=fp,
|
66 |
+
model="whisper-1",
|
67 |
+
response_format="text",
|
68 |
+
)
|
69 |
+
return resp
|
70 |
+
|
71 |
+
|
72 |
+
# ---------------------------------------------------------------------------
|
73 |
+
# Excel → Markdown helper
|
74 |
+
# ---------------------------------------------------------------------------
|
75 |
+
class ExcelToTextTool(Tool):
|
76 |
+
"""Render an Excel worksheet as a Markdown table (GitHub flavour)."""
|
77 |
+
|
78 |
+
name = "excel_to_text"
|
79 |
+
description = (
|
80 |
+
"Convert an Excel sheet to Markdown. Accepts sheet name *or* index "
|
81 |
+
"(as string). Returns a GitHub‑style table without index column."
|
82 |
+
)
|
83 |
+
|
84 |
+
inputs = {
|
85 |
+
"excel_path": {
|
86 |
+
"type": "string",
|
87 |
+
"description": "Path to the Excel file (.xlsx / .xls).",
|
88 |
+
},
|
89 |
+
"sheet_name": {
|
90 |
+
"type": "string",
|
91 |
+
"nullable": True,
|
92 |
+
"description": (
|
93 |
+
"Worksheet name or 0‑based index *as string* (optional; "
|
94 |
+
"default=first sheet)."
|
95 |
+
),
|
96 |
+
},
|
97 |
+
}
|
98 |
+
output_type = "string"
|
99 |
+
|
100 |
+
@lru_cache(maxsize=32)
|
101 |
+
def forward(self, excel_path: str, sheet_name: Optional[str] = None) -> str: # type: ignore[override]
|
102 |
+
path = Path(excel_path).expanduser().resolve()
|
103 |
+
if not path.is_file():
|
104 |
+
return f"Error: Excel file not found at {path}"
|
105 |
+
|
106 |
+
import importlib.util as _imp
|
107 |
+
if not _imp.find_spec("pandas"):
|
108 |
+
return "Error: pandas library not available in this environment."
|
109 |
+
import pandas as pd
|
110 |
+
|
111 |
+
try:
|
112 |
+
sheet: Union[int, str] = 0
|
113 |
+
if sheet_name and sheet_name.strip():
|
114 |
+
sheet = int(sheet_name) if sheet_name.isdigit() else sheet_name
|
115 |
+
df = pd.read_excel(path, sheet_name=sheet)
|
116 |
+
if hasattr(pd.DataFrame, "to_markdown"):
|
117 |
+
return df.to_markdown(index=False)
|
118 |
+
from tabulate import tabulate # pragma: no cover
|
119 |
+
return tabulate(df, headers="keys", tablefmt="github", showindex=False)
|
120 |
+
except Exception as exc: # pragma: no cover – user‑visible error
|
121 |
+
return f"Error reading Excel file: {exc}"
|
122 |
+
|
123 |
+
|
124 |
+
# ---------------------------------------------------------------------------
|
125 |
+
# NEW: YouTube Question‑Answer Tool
|
126 |
+
# ---------------------------------------------------------------------------
|
127 |
+
class YouTubeQATool(PipelineTool):
|
128 |
+
"""Answer questions about the spoken content of a YouTube video.
|
129 |
+
|
130 |
+
• Downloads the auto‑generated or creator‑provided transcript using
|
131 |
+
**youtube‑transcript‑api** (no API key needed for most public videos).
|
132 |
+
• Feeds a compressed transcript + user question to GPT‑4o for an answer.
|
133 |
+
• Caches transcripts locally to avoid repeated network calls.
|
134 |
+
"""
|
135 |
+
|
136 |
+
name = "youtube_qa"
|
137 |
+
description = (
|
138 |
+
"Given a YouTube URL and a natural‑language *question*, return an answer "
|
139 |
+
"based solely on the video transcript (no hallucinations)."
|
140 |
+
)
|
141 |
+
|
142 |
+
inputs = {
|
143 |
+
"url": {
|
144 |
+
"type": "string",
|
145 |
+
"description": "Full YouTube video URL or just the watch ID.",
|
146 |
+
},
|
147 |
+
"question": {
|
148 |
+
"type": "string",
|
149 |
+
"description": "Question about the video content (English / French).",
|
150 |
+
},
|
151 |
+
}
|
152 |
+
output_type = "string"
|
153 |
+
|
154 |
+
# ––––– internal helpers ––––– ------------------------------------------------
|
155 |
+
_TRANSCRIPT_CACHE: dict[str, str] = {} # simple in‑proc cache
|
156 |
+
|
157 |
+
@staticmethod
|
158 |
+
def _extract_video_id(url: str) -> str:
|
159 |
+
"""Return the 11‑char YouTube ID from a watch/shorts URL or raw ID."""
|
160 |
+
if len(url) == 11 and "/" not in url:
|
161 |
+
return url
|
162 |
+
parsed = _urlparse.urlparse(url)
|
163 |
+
if parsed.hostname in ("youtu.be",):
|
164 |
+
return parsed.path.lstrip("/")
|
165 |
+
if parsed.hostname and "youtube" in parsed.hostname:
|
166 |
+
qs = _urlparse.parse_qs(parsed.query)
|
167 |
+
if "v" in qs:
|
168 |
+
return qs["v"][0]
|
169 |
+
# shorts/embedded
|
170 |
+
return parsed.path.split("/")[-1]
|
171 |
+
raise ValueError("Could not parse YouTube video ID from URL")
|
172 |
+
|
173 |
+
@classmethod
|
174 |
+
def _get_transcript(cls, video_id: str) -> str:
|
175 |
+
if video_id in cls._TRANSCRIPT_CACHE:
|
176 |
+
return cls._TRANSCRIPT_CACHE[video_id]
|
177 |
+
try:
|
178 |
+
from youtube_transcript_api import YouTubeTranscriptApi # type: ignore
|
179 |
+
except ModuleNotFoundError:
|
180 |
+
return "Error: youtube‑transcript‑api library not installed."
|
181 |
+
try:
|
182 |
+
segments: List[dict] = YouTubeTranscriptApi.get_transcript(video_id)
|
183 |
+
except Exception as exc: # private video, disabled captions, …
|
184 |
+
return f"Error fetching transcript: {exc}"
|
185 |
+
text = " ".join(seg["text"] for seg in segments)
|
186 |
+
cls._TRANSCRIPT_CACHE[video_id] = text
|
187 |
+
return text
|
188 |
+
|
189 |
+
# ––––– main entry point ––––– -------------------------------------------
|
190 |
+
def forward(self, url: str, question: str) -> str: # type: ignore[override]
|
191 |
+
try:
|
192 |
+
vid = self._extract_video_id(url)
|
193 |
+
except ValueError as e:
|
194 |
+
return str(e)
|
195 |
+
|
196 |
+
transcript = self._get_transcript(vid)
|
197 |
+
if transcript.startswith("Error"):
|
198 |
+
return transcript
|
199 |
+
|
200 |
+
# Keep prompt under ~15k chars – truncate transcript if necessary
|
201 |
+
max_chars = 15000
|
202 |
+
if len(transcript) > max_chars:
|
203 |
+
transcript = transcript[:max_chars] + " …(truncated)…"
|
204 |
+
|
205 |
+
from openai import chat # lazy import OpenAI client only here
|
206 |
+
|
207 |
+
system = (
|
208 |
+
"You are a meticulous assistant. Answer the user's question about "
|
209 |
+
"the provided YouTube transcript. If the transcript lacks the "
|
210 |
+
"information, reply 'I don't know based on the transcript.'"
|
211 |
+
)
|
212 |
+
messages = [
|
213 |
+
{"role": "system", "content": system},
|
214 |
+
{"role": "user", "content": f"Transcript:\n{transcript}"},
|
215 |
+
{"role": "user", "content": f"Question: {question}"},
|
216 |
+
]
|
217 |
+
try:
|
218 |
+
resp = chat.completions.create(
|
219 |
+
model="gpt-4o", # uses the same hosted model as the agent
|
220 |
+
messages=messages,
|
221 |
+
temperature=0.2,
|
222 |
+
max_tokens=256,
|
223 |
+
)
|
224 |
+
return resp.choices[0].message.content.strip()
|
225 |
+
except Exception as exc: # pragma: no cover
|
226 |
+
return f"Error generating answer: {exc}"
|
227 |
+
|
228 |
+
|
229 |
+
# ---------------------------------------------------------------------------
|
230 |
+
# Helper: download attachment (if any)
|
231 |
+
# ---------------------------------------------------------------------------
|
232 |
+
|
233 |
+
def download_file_if_any(base_api_url: str, task_id: str) -> str | None:
|
234 |
+
url = f"{base_api_url}/files/{task_id}"
|
235 |
+
try:
|
236 |
+
resp = requests.get(url, timeout=30)
|
237 |
+
if resp.status_code == 404:
|
238 |
+
return None
|
239 |
+
resp.raise_for_status()
|
240 |
+
except requests.HTTPError:
|
241 |
+
raise
|
242 |
+
|
243 |
+
filename = task_id
|
244 |
+
if cd := resp.headers.get("content-disposition"):
|
245 |
+
if match := re.search(r'filename="([^"]+)"', cd):
|
246 |
+
filename = match.group(1)
|
247 |
+
|
248 |
+
tmp_dir = Path(tempfile.gettempdir(), "gaia_files")
|
249 |
+
tmp_dir.mkdir(exist_ok=True)
|
250 |
+
file_path = tmp_dir / filename
|
251 |
+
file_path.write_bytes(resp.content)
|
252 |
+
return str(file_path)
|
253 |
+
|
254 |
+
|
255 |
+
# ---------------------------------------------------------------------------
|
256 |
+
# Minimal agent wired with our custom tools
|
257 |
+
# ---------------------------------------------------------------------------
|
258 |
+
class BasicAgent:
|
259 |
+
_model = OpenAIServerModel(model_id="gpt-4o")
|
260 |
+
_tools = [
|
261 |
+
DuckDuckGoSearchTool(),
|
262 |
+
WikipediaSearchTool(),
|
263 |
+
SpeechToTextTool(),
|
264 |
+
ExcelToTextTool(),
|
265 |
+
YouTubeQATool(), # <-- NEW
|
266 |
+
]
|
267 |
+
|
268 |
+
def __init__(self) -> None:
|
269 |
self.agent = CodeAgent(
|
270 |
+
model=self._model,
|
271 |
+
tools=self._tools,
|
272 |
+
add_base_tools=True,
|
273 |
+
additional_authorized_imports=[
|
274 |
+
"numpy",
|
275 |
+
"pandas",
|
276 |
+
"csv",
|
277 |
+
"subprocess",
|
278 |
+
],
|
279 |
)
|
280 |
+
print("BasicAgent initialized with YouTubeQATool.")
|
281 |
+
|
282 |
+
def __call__(self, question: str) -> str: # noqa: D401
|
283 |
+
print(f"Agent received question (first 80 chars): {question[:80]}…")
|
284 |
+
answer = self.agent.run(question)
|
285 |
+
print(f"Agent returning answer: {answer}")
|
286 |
+
return answer
|
287 |
|
|
|
|
|
|
|
|
|
|
|
|
|
288 |
|
289 |
def run_and_submit_all( profile: gr.OAuthProfile | None):
|
290 |
"""
|