File size: 29,123 Bytes
98fc0a1
e6c6c2d
 
98fc0a1
 
e6c6c2d
98fc0a1
 
 
 
 
 
e6c6c2d
98fc0a1
 
 
 
ff06935
 
98fc0a1
 
 
 
 
 
 
 
 
 
e6c6c2d
98fc0a1
 
 
 
e6c6c2d
98fc0a1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e6c6c2d
 
 
 
ff06935
e6c6c2d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4a99d36
 
e6c6c2d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
98fc0a1
e6c6c2d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4d8b3f6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e6c6c2d
98fc0a1
e6c6c2d
 
 
 
 
 
 
 
 
 
 
 
4a99d36
e6c6c2d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2001613
 
4a99d36
 
 
 
 
 
 
 
 
 
 
 
 
98fc0a1
e6c6c2d
98fc0a1
e6c6c2d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
98fc0a1
e6c6c2d
 
98fc0a1
e6c6c2d
98fc0a1
 
 
 
 
 
 
 
e6c6c2d
 
 
98fc0a1
 
 
 
 
 
 
 
 
 
 
 
 
e6c6c2d
98fc0a1
 
 
e6c6c2d
98fc0a1
 
 
 
 
e6c6c2d
 
98fc0a1
 
e6c6c2d
 
 
 
 
 
 
 
 
 
 
 
 
ff06935
 
 
 
 
 
 
 
 
e6c6c2d
 
ff06935
e6c6c2d
 
 
ff06935
e6c6c2d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
98fc0a1
 
e6c6c2d
 
 
 
 
4a99d36
e6c6c2d
 
 
 
 
 
 
 
 
 
 
 
98fc0a1
e6c6c2d
98fc0a1
 
e6c6c2d
98fc0a1
e6c6c2d
 
 
 
98fc0a1
e6c6c2d
 
 
 
 
 
 
 
 
 
 
98fc0a1
 
e6c6c2d
 
 
 
 
 
4a99d36
e6c6c2d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4a99d36
e6c6c2d
 
 
 
4a99d36
 
e6c6c2d
 
4a99d36
e6c6c2d
 
 
 
 
 
 
4a99d36
 
e6c6c2d
4a99d36
e6c6c2d
 
 
 
 
98fc0a1
e6c6c2d
98fc0a1
 
 
 
 
 
 
 
 
 
 
 
 
e6c6c2d
98fc0a1
e6c6c2d
98fc0a1
 
e6c6c2d
 
 
 
 
 
 
98fc0a1
e6c6c2d
 
 
 
 
 
 
 
 
 
 
98fc0a1
e6c6c2d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
98fc0a1
e6c6c2d
 
98fc0a1
e6c6c2d
 
 
 
 
98fc0a1
 
 
 
e6c6c2d
 
 
 
 
98fc0a1
e6c6c2d
 
 
 
98fc0a1
e6c6c2d
98fc0a1
e6c6c2d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ff06935
e6c6c2d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
98fc0a1
e6c6c2d
98fc0a1
 
 
c9ed75d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
import dash
from dash import dcc, html, Input, Output, State, ctx, callback_context
from dash.exceptions import PreventUpdate
import dash_bootstrap_components as dbc
import plotly.express as px
import plotly.graph_objects as go
import pandas as pd
import numpy as np
import umap
import hdbscan
import sklearn.feature_extraction.text as text
from dash.exceptions import PreventUpdate
import json
from dotenv import load_dotenv
import helpers
from omeka_s_api_client import OmekaSClient, OmekaSClientError
from lancedb_client import LanceDBManager
import torch
import torch.nn.functional as F

# Load .env for credentials
load_dotenv()
_DEFAULT_PARSE_METADATA = (
    'dcterms:identifier','dcterms:type','dcterms:title', 'dcterms:description',
    'dcterms:creator','dcterms:publisher','dcterms:date','dcterms:spatial',
    'dcterms:format','dcterms:provenance','dcterms:subject','dcterms:medium',
    'bibo:annotates','bibo:content', 'bibo:locator', 'bibo:owner'
)

app = dash.Dash(__name__, suppress_callback_exceptions=True, external_stylesheets=[dbc.themes.BOOTSTRAP])
app.config.suppress_callback_exceptions = True
server = app.server
manager = LanceDBManager()


french_stopwords = text.ENGLISH_STOP_WORDS.union([
    "alors", "au", "aucuns", "aussi", "autre", "avant", "avec", "avoir", "bon",
    "car", "ce", "cela", "ces", "ceux", "chaque", "ci", "comme", "comment", "dans",
    "des", "du", "dedans", "dehors", "depuis", "devrait", "doit", "donc", "dos",
    "début", "elle", "elles", "en", "encore", "essai", "est", "et", "eu", "fait",
    "faites", "fois", "font", "hors", "ici", "il", "ils", "je", "juste", "la", "le",
    "les", "leur", "là", "ma", "maintenant", "mais", "mes", "mine", "moins", "mon",
    "mot", "même", "ni", "nommés", "notre", "nous", "nouveaux", "ou", "où", "par",
    "parce", "parole", "pas", "personnes", "peut", "peu", "pièce", "plupart", "pour",
    "pourquoi", "quand", "que", "quel", "quelle", "quelles", "quels", "qui", "sa",
    "sans", "ses", "seulement", "si", "sien", "son", "sont", "sous", "soyez", "sujet",
    "sur", "ta", "tandis", "tellement", "tels", "tes", "ton", "tous", "tout", "trop",
    "très", "tu", "valeur", "voie", "voient", "vont", "votre", "vous", "vu", "ça",
    "étaient", "état", "étions", "été", "être"
])

# -------------------- Layout --------------------
app.layout = html.Div([
    # Header
    dbc.NavbarSimple(
        children=[],
        brand="Omeka S Computer Vision Assistant",
        brand_href="/",
        color="light",
        dark=False,
        className="mb-4 shadow-sm border-bottom"
    ),

    # Main Container
    dbc.Container(fluid=True, children=[
        dbc.Row([
            # Left column - Controls
            dbc.Col(width=6, children=[
                dbc.Card([
                    dbc.CardHeader(html.H4("Data Loading and ploting", className="text-center")),
                    dbc.CardBody([

                        # Tabs
                        dcc.Tabs(id="data-tabs", value="api", children=[
                            dcc.Tab(label="Harvest data from Omeka S", value="omeka"),
                            dcc.Tab(label="Visualize existing collections", value="lance")
                        ]),

                        html.Div(id="data-tab-content"),

                        html.Br(),
                    ])
                ], className="mb-4 shadow-sm")
            ]),
            # Right column - Explanations
            dbc.Col(width=6, children=[
                dbc.Card([
                    dbc.CardHeader(
                        html.H4(
                            dbc.Button("Explanations", color="primary", id="explanation-toggle", n_clicks=0),
                            className="text-center"
                        )
                    ),
                    dbc.Collapse(
                        dbc.CardBody([
                            html.P("This application allows you to explore Omeka S collections through interactive visualization."),
    html.P("You can load data in two ways:"),
    html.P("1. From Omeka S: Connect to your Omeka S instance and select a collection to visualize."),
    html.P("2. From LanceDB: Load previously processed collections from the local database."),
    html.P("The visualization uses UMAP projection and topic clustering to create an interactive map of your collection."),
    html.P("You can explore items by hovering over points and search using semantic queries."),
                        ]),
                        id="explanation-collapse",
                        is_open=False
                    )
                ], className="mb-4 shadow-sm")
            ])
        ]),

        html.Br(),
        dbc.Row([
            dbc.Col([
                dbc.InputGroup([
                    dbc.Input(
                        id="search-input",
                        type="text",
                        placeholder="Search...",
                    ),
                    dbc.Button(
                        "Search", 
                        id="search-button", 
                        color="primary",
                        size="sm",
                    ),
                    dbc.Button(
                        "Clear", 
                        id="clear-button", 
                        color="secondary",
                        size="sm",
                    ),
                ], className="d-flex align-items-center")
            ], width={"size": 6, "offset": 3}),  # Center the input group and make it half width
        ], className="mb-3"), 
        dbc.Row([
        dbc.Col([
            html.Label("Number of results:", className="mb-0"),
            dcc.Slider(
                id="search-limit-slider",
                min=1,
                max=50,
                step=1,
                value=5,
                marks={i: str(i) for i in range(1, 51, 1)},
                className="mt-1"
            ),
        ], width={"size": 6, "offset": 3}),
    ], className="mb-3"),       
        html.Br(),
        # Central Visualization (like scatter plot, map etc.)  
        dbc.Row([
                html.Div([
                    dbc.Spinner(
                    id="loading-spinner",
                    type="grow",
                    color="primary",
                    fullscreen=False,
                    children=[
                         # Add a placeholder div
                        html.Div(
                            id="graph-placeholder",
                            children="Select a data source and load data to visualize",
                            style={
                                "height": "700px",
                                "display": "flex",
                                "alignItems": "center",
                                "justifyContent": "center",
                                "color": "#666",
                                "fontSize": "1.2rem",
                                "fontStyle": "italic",
                                "width": "900px"  # Set width to 70%
                            }
                        ),
                        dcc.Graph(
                        id="umap-graph", 
                        style={
                            "width": "900px",  # Set width to 70%
                            "height": "700px",
                            "display": "none"
                        },
                        config={
                            'scrollZoom': True,
                            'displayModeBar': True,
                            'modeBarButtonsToAdd': ['drawline']
                        }
                    )],
                ),
                    html.Div(id="point-details", 
                    style={
                        "width": "30%",  # Set width to 30%
                        "padding": "15px",
                        "borderLeft": "1px solid #ccc",
                        "overflowY": "auto", 
                        "height": "700px",
                        "minWidth": "250px",
                        "maxWidth": "30%"  # Match the width
                    }),
                ], 
                style={
                    "display": "flex", 
                    "flexDirection": "row",
                    "width": "100%",
                    "gap": "10px",
                    "justifyContent": "space-between"
                }),
            ]),
            html.Div(id="status"),
            dcc.Store(id="omeka-client-config", storage_type="session"),   
        ]),

    # Footer
    html.Footer([
        html.Hr(),
        dbc.Container([
            dbc.Row([
                dbc.Col([
                    html.Img(src="./SmartBibl.IA_Solutions.png", height="50"),
                    html.Small([
                        html.Br(),
                        html.A("Géraldine Geoffroy", href="mailto:grldn.geoffroy@gmail.com", className="text-muted")
                    ])
                ]),
                dbc.Col([
                    html.H5("Code source"),
                    html.Ul([
                        html.Li(html.A("Github", href="https://github.com/gegedenice/openalex-explorer", className="text-muted", target="_blank"))
                    ])
                ]),
                dbc.Col([
                    html.H5("Ressources"),
                    html.Ul([
                        html.Li(html.A("Nomic Atlas", href="https://atlas.nomic.ai/", target="_blank", className="text-muted")),
                        html.Li(html.A("Model nomic-embed-text-v1.5", href="https://huggingface.co/nomic-ai/nomic-embed-text-v1.5", target="_blank", className="text-muted")),
                        html.Li(html.A("Model nomic-embed-vision-v1.5", href="https://huggingface.co/nomic-ai/nomic-embed-vision-v1.5", target="_blank", className="text-muted"))
                    ])
                ])
            ])
        ])
    ], className="mt-5 p-3 bg-light border-top")
])

# -------------------- UI Callbacks --------------------
# ------------------------------------------------------

##-------------------- Tabs Callbacks --------------------
@app.callback(
    Output("data-tab-content", "children"),
    Input("data-tabs", "value")
)
def render_tab_content(tab):
    if tab == "omeka":
        return html.Div([
            html.Div([
                html.H5("Harvest data from an Omeka S instance", className="mb-3"),
                # API URL input with full width
                dbc.InputGroup([
                    dbc.Input(
                        id="api-url",
                        value="https://your-omeka-instance.org",
                        type="url",
                        placeholder="Enter your Omeka S instance URL",
                        className="mb-2"
                    ),
                ]),
                # Buttons and dropdowns container
                dbc.Container([
                    dbc.Row([
                        dbc.Col([
                            dbc.Button(
                                "Load Item Sets",
                                id="load-sets",
                                color="link",
                                size="sm",
                                className="w-100 mb-2"
                            ),
                        ]),
                    ]),
                    dbc.Row([
                        dbc.Col([
                            dcc.Dropdown(
                                id="items-sets-dropdown",
                                placeholder="Select a collection",
                                className="mb-2"
                            ),
                        ]),
                    ]),
                    dbc.Row([
                        dbc.Col([
                            dbc.Input(
                                id="table-name",
                                value="Enter a table name for data storage",
                                type="text",
                                placeholder="New table name",
                                className="mb-2"
                            ),
                        ]),
                    ]),
                    dbc.Row([
                        dbc.Col([
                            dbc.Button(
                                "Process Omeka Collection",
                                id="process-omeka",
                                color="success",
                                size="sm",
                                className="mt-2"
                            ),
                        ]),
                    ]),
                ], fluid=True, className="p-0"),
            ], className="p-3"),
        ], className="border rounded bg-white shadow-sm")
    elif tab == "lance":
        # Get tables at runtime
        tables = manager.list_tables()
        return html.Div([
            html.H5("From LanceDB", className="mb-3"),
            html.Div([
                dbc.RadioItems(
                    id="db-tables-radio",
                    options=[{"label": t, "value": t} for t in tables],
                    value=tables[0] if tables else None,
                    className="mb-3"
                ),
                dbc.Button("Display Table", id="load-data-db", color="success", size="sm", className="me-2"),
                dbc.Button("Drop Table", id="drop-data-db", color="danger", size="sm"),
            ]) if tables else html.P("No tables available in LanceDB", className="text-muted"),
        ], className="border rounded bg-white shadow-sm p-3")

    return html.Div("Invalid tab selected.")

# -------------------- Collpase callback --------------------
@app.callback(
    Output("explanation-collapse", "is_open"),
    Input("explanation-toggle", "n_clicks"),
    prevent_initial_call=True
)
def toggle_collapse(n):
    return n % 2 == 1

# -------------------- Graph placeholder Toggle callback --------------------
@app.callback(
    Output("graph-placeholder", "style"),
    Output("umap-graph", "style"),
    [Input("umap-graph", "figure")],
    prevent_initial_call=True
)
def toggle_graph_visibility(figure):
    if figure is None:
        return {"display": "flex"}, {"display": "none"}
    return {"display": "none"}, {
        "flex": 3,
        "width": "100%",
        "display": "block"
    }

# -------------------- Features Callbacks --------------------
# ------------------------------------------------------------

## -------------------- Load Omeka collections callback--------------------

@app.callback(
    Output("items-sets-dropdown", "options"),
    Output("omeka-client-config", "data"),
    Input("load-sets", "n_clicks"),
    State("api-url", "value"),
    prevent_initial_call=True
)
def load_item_sets(n_clicks, base_url):
    if n_clicks is None:  # Add this check
        raise PreventUpdate
    client = OmekaSClient(base_url, "...", "...", 50)
    try:
        item_sets = client.list_all_item_sets()
        options = [{"label": s.get('dcterms:title', [{}])[0].get('@value', 'N/A'), "value": s["o:id"]} for s in item_sets]
        return options, {
            "base_url": base_url,
            "key_identity": "...",
            "key_credential": "...",
            "default_per_page": 50
        }
    except Exception as e:
        return dash.no_update, dash.no_update

## -------------------- Load & Process Omeka items callback--------------------
@app.callback(
    Output("umap-graph", "figure"),
    Output("status", "children"),
    Input("process-omeka", "n_clicks"),  # Changed ID to match new button
    State("items-sets-dropdown", "value"),
    State("omeka-client-config", "data"),
    State("table-name", "value"),
    prevent_initial_call=True
)
def handle_omeka_data(n_clicks, item_set_id, client_config, table_name):
    if not n_clicks or not client_config:
        raise PreventUpdate

    client = OmekaSClient(
        base_url=client_config["base_url"],
        key_identity=client_config["key_identity"],
        key_credential=client_config["key_credential"]
    )
    
    df_omeka = harvest_omeka_items(client, item_set_id=item_set_id)
    items = df_omeka.to_dict(orient="records")
    records_with_text = [helpers.add_concatenated_text_field_exclude_keys(item, keys_to_exclude=['id','images_urls'], text_field_key='text', pair_separator=' - ') for item in items]
    df = helpers.prepare_df_atlas(pd.DataFrame(records_with_text), id_col='id', images_col='images_urls')
    
    text_embed = helpers.generate_text_embed(df['text'].tolist())
    img_embed = helpers.generate_img_embed(df['images_urls'].tolist())
    # Convert to tensors if needed
    text_tensor = torch.tensor(text_embed)
    img_tensor = torch.tensor(img_embed)

    # Average then normalize
    combined = (0.7 * text_tensor + 0.3 * img_tensor)
    normalized_embeddings = F.normalize(combined, p=2, dim=1)

    embeddings = normalized_embeddings.numpy()
    df["embeddings"] = embeddings.tolist()

    reducer = umap.UMAP(n_neighbors=15, min_dist=0.1, metric="cosine")
    umap_embeddings = reducer.fit_transform(embeddings)
    df["umap_embeddings"] = umap_embeddings.tolist()

    clusterer = hdbscan.HDBSCAN(min_cluster_size=10, metric="euclidean")
    cluster_labels = clusterer.fit_predict(umap_embeddings)
    df["Cluster"] = cluster_labels

    vectorizer = text.TfidfVectorizer(max_features=1000, stop_words=list(french_stopwords), lowercase=True)
    tfidf_matrix = vectorizer.fit_transform(df["text"].astype(str).tolist())
    top_words = []
    for label in sorted(df["Cluster"].unique()):
        if label == -1:
            top_words.append("Noise")
            continue
        mask = (df["Cluster"] == label).to_numpy().nonzero()[0]
        cluster_docs = tfidf_matrix[mask]
        mean_tfidf = cluster_docs.mean(axis=0)
        mean_tfidf = np.asarray(mean_tfidf).flatten()
        top_indices = mean_tfidf.argsort()[::-1][:5]
        terms = [vectorizer.get_feature_names_out()[i] for i in top_indices]
        top_words.append(", ".join(terms))
    cluster_name_map = {label: name for label, name in zip(sorted(df["Cluster"].unique()), top_words)}
    df["Topic"] = df["Cluster"].map(cluster_name_map)

    manager.initialize_table(table_name)
    manager.add_entry(table_name, df.to_dict(orient="records"))
    
    return create_umap_plot(df)

## -------------------- Load LanceDB data callback--------------------
@app.callback(
    Output("umap-graph", "figure", allow_duplicate=True),
    Output("status", "children", allow_duplicate=True),
    Input("load-data-db", "n_clicks"),
    State("db-tables-radio", "value"), 
    prevent_initial_call=True
)
def handle_db_data(n_clicks, db_table):
    if not n_clicks or not db_table:
        raise PreventUpdate
        
    items = manager.get_content_table(db_table)
    df = pd.DataFrame(items)
    df = df.dropna(axis=1, how='all')
    df = df.fillna('')
    #umap_embeddings = np.array(df["umap_embeddings"].tolist())
    return create_umap_plot(df)

## -------------------- plotly Hover datapoint callback--------------------
@app.callback(
    Output("point-details", "children"),
    Input("umap-graph", "hoverData")
)
def show_point_details(hoverData):
    if not hoverData:
        return html.Div("🖱️ Hover a point to see more details.", style={"color": "#888"})
    id,item_id, img_url, title, desc = hoverData["points"][0]["customdata"]
    return html.Div([
        html.H4(title, style={"fontSize": "1.2rem"}),  # Reduced header size
        html.P(f"Item ID: {item_id}", style={"fontSize": "0.9rem", "color": "#666"}),  # Smaller text
        html.Img(src=img_url, style={
            "maxWidth": "300px",  # Fixed max width instead of 100%
            "height": "auto",     # Maintain aspect ratio
            "marginBottom": "10px",
            "borderRadius": "5px",
            "boxShadow": "0 2px 4px rgba(0,0,0,0.1)" 
        }),
        html.P(desc or "No description available.",
               style={"lineHeight": "1.6", "color": "#444", "fontSize": "0.9rem"})  # Smaller text
    ])

## -------------------- Search & filter datapoint callback--------------------    
@app.callback(
    Output("umap-graph", "figure", allow_duplicate=True),
    Input("search-button", "n_clicks"),
    Input("search-limit-slider", "value"),  # Add slider input
    State("search-input", "value"),
    State("db-tables-radio", "value"),
    State("umap-graph", "figure"),
    prevent_initial_call=True
)
def filter_points(n_clicks, limit, search_query, table, current_fig):
    # Get the trigger that caused the callback
    trigger = ctx.triggered_id
    
    # If slider changed but no search query exists, don't update
    if trigger == "search-limit-slider" and not search_query:
        return dash.no_update
        
    if not search_query:
        # Reset visibility of all points
        for trace in current_fig['data']:
            trace['visible'] = True
        return current_fig
        
    # Generate text embedding
    query_embed = helpers.generate_text_embed([f"search_query: {search_query}"]).tolist()  
    
    # Perform semantic search using the slider value
    matching = manager.semantic_search(
        table_name=table,
        query_embed=query_embed, 
        limit=limit  # Use the slider value
    )
    
    matching_ids = [item['id'] for item in json.loads(matching)]
    print(f"Searching for '{search_query}' with limit {limit}")
    print(f"Found {len(matching_ids)} matches")
    
    # Update visibility of points
    fig = go.Figure(current_fig)
    for trace in fig.data:
        point_ids = [point[0] for point in trace['customdata']]
        selected_indices = [i for i, id in enumerate(point_ids) if id in matching_ids]
        trace.update(
            selectedpoints=selected_indices,
            unselected=dict(marker=dict(opacity=0.1))
        )
    
    return fig

## -------------------- Clear search callback--------------------    
@app.callback(
    Output("umap-graph", "figure", allow_duplicate=True),
    Output("search-input", "value"),  # Clear the search input
    Input("clear-button", "n_clicks"),
    State("umap-graph", "figure"),
    prevent_initial_call=True
)
def clear_search(n_clicks, current_fig):
    if not n_clicks:
        raise PreventUpdate
        
    fig = go.Figure(current_fig)
    
    # Reset all points to visible and full opacity
    for trace in fig.data:
        trace.update(
            selectedpoints=None,
            unselected=None,
            opacity=0.8
        )
    
    return fig, ""  # Return cleared figure and empty search input

## -------------------- Drop table callback--------------------
@app.callback(
    Output("db-tables-dropdown", "options",allow_duplicate=True),  # Update dropdown options
    Output("status", "children",allow_duplicate=True),  # Show status message
    Input("drop-data-db", "n_clicks"),
    State("db-tables-radio", "value"),
    State("data-tabs", "value"),
    prevent_initial_call=True
)
def drop_db_data(n_clicks, db_table, current_tab):
    if not n_clicks or not db_table:
        raise PreventUpdate
        
    try:
        success = manager.drop_table(db_table)
        
        if success:
            # Re-render the entire tab content to show updated radio buttons
            return render_tab_content("lance"), f"Table '{db_table}' successfully deleted"
        else:
            return dash.no_update, f"Failed to delete table '{db_table}'"
            
    except Exception as e:
        print(f"Error dropping table: {str(e)}")
        return dash.no_update, f"Error: {str(e)}", dash.no_update

# -------------------- Utility --------------------
# -------------------------------------------------

def harvest_omeka_items(client, item_set_id=None, per_page=50):
    """
    Fetch and parse items from Omeka S.
    Args:
        client: OmekaSClient instance
        item_set_id: ID of the item set to fetch items from (optional)
        per_page: Number of items to fetch per page (default: 50)
    Returns:
        DataFrame containing parsed item data
    """
    print("\n--- Fetching and Parsing Multiple Items by colection---")
    try:
        # Fetch items
        items_list = client.list_all_items(item_set_id=item_set_id, per_page=per_page)
        print(f"Initial fetch: {len(items_list)} items")

        parsed_items_list = []
        for idx, item_raw in enumerate(items_list):
            try:
                print(f"\nProcessing item {idx + 1}/{len(items_list)}")
                if 'o:media' not in item_raw:
                    print(f"Skipping item {idx + 1}: No media found")
                    continue

                parsed = client.digest_item_data(item_raw, prefixes=_DEFAULT_PARSE_METADATA)
                if not parsed:
                    print(f"Skipping item {idx + 1}: Parsing failed")
                    continue

                # Debug media processing
                medias_id = [x["o:id"] for x in item_raw["o:media"]]
                print(f"Found {len(medias_id)} media items")
                
                medias_list = []
                for media_id in medias_id:
                    try:
                        media = client.get_media(media_id)
                        print(f"Media type: {media.get('o:media_type', 'unknown')}")
                        if "image" in media.get("o:media_type", ""):
                            url = media.get('o:original_url')
                            if url:
                                medias_list.append(url)
                            else:
                                print(f"No URL found for media {media_id}")
                    except Exception as e:
                        print(f"Error processing media {media_id}: {str(e)}")

                if medias_list:
                    parsed["images_urls"] = medias_list
                    parsed_items_list.append(parsed)
                    print(f"Added item with {len(medias_list)} images")
                else:
                    print(f"Skipping item {idx + 1}: No valid image URLs found")

            except Exception as e:
                print(f"Error processing item {idx + 1}: {str(e)}")
                print(f"Item raw data: {item_raw}")
                continue

        if not parsed_items_list:
            print("No valid items were parsed!")
            return None

        print(f"\nFinal results:")
        print(f"Total items processed: {len(items_list)}")
        print(f"Successfully parsed items: {len(parsed_items_list)}")
        
        df = pd.DataFrame(parsed_items_list)
        print(f"DataFrame columns: {df.columns.tolist()}")
        print(f"DataFrame shape: {df.shape}")
        return df

    except OmekaSClientError as e:
        print(f"Omeka client error: {str(e)}")
        return None
    except Exception as e:
        print(f"Unexpected error: {str(e)}")
        print(f"Error type: {type(e)}")
        import traceback
        print(f"Traceback:\n{traceback.format_exc()}")
        return None
        
def create_umap_plot(df):
    coords = np.array(df["umap_embeddings"].tolist())
    fig = px.scatter(
        df,
        x=coords[:, 0],
        y=coords[:, 1],
        color="Topic",  # Start with top-level topics
        custom_data=[df["id"], df["item_id"], df["images_urls"], df["Title"], df["Description"]],
        hover_data=None,
        title="UMAP Projection with HDBSCAN Topics",
        color_discrete_sequence=px.colors.qualitative.D3,
        width=900,
        height=700,
    )
    # Update marker style
    fig.update_traces(
        marker=dict(
            size=12,  # Larger points
            opacity=0.8,  # Slight transparency
            line=dict(width=0),  # Remove borders
            symbol='circle'
        ),
        hoverinfo='none',  # Disable native hover
        hovertemplate=None
        #hovertemplate="<b>%{customdata[1]}</b><br><img src='%{customdata[0]}' height='150'><extra></extra>"
    )
    
    # Convert to a go.Figure object to access additional configuration
    fig = go.Figure(fig)
    
    # Update layout including scroll zoom
    fig.update_layout(
        plot_bgcolor='white',
        paper_bgcolor='white',
        height=700,
        margin=dict(t=30, b=30, l=30, r=30),
        showlegend=True,
        legend=dict(
            yanchor="top",
            y=0.99,
            xanchor="right",
            x=0.99,
            bgcolor='rgba(255,255,255,0.8)',
            bordercolor='rgba(0,0,0,0)'
        ),
        xaxis=dict(
            showgrid=False,
            zeroline=False,
            showline=False,
            showticklabels=False,
            fixedrange=False
        ),
        yaxis=dict(
            showgrid=False,
            zeroline=False,
            showline=False,
            showticklabels=False,
            fixedrange=False
        ),
        dragmode='pan',
        modebar_add=[
            'zoom',
            'pan',
            'zoomIn',
            'zoomOut',
            'resetScale'
        ],
    )
    
    return fig, f"Loaded {len(df)} items and projected into 2D."

if __name__ == "__main__":
    app.run(debug=True,port=7860)