Update app.py
Browse files
app.py
CHANGED
@@ -1,17 +1,18 @@
|
|
1 |
import dash
|
2 |
-
from dash import dcc, html, Input, Output, State, ctx
|
|
|
3 |
import dash_bootstrap_components as dbc
|
4 |
import plotly.express as px
|
|
|
5 |
import pandas as pd
|
6 |
import numpy as np
|
7 |
import umap
|
8 |
import hdbscan
|
9 |
import sklearn.feature_extraction.text as text
|
10 |
from dash.exceptions import PreventUpdate
|
11 |
-
import
|
12 |
from dotenv import load_dotenv
|
13 |
import helpers
|
14 |
-
import lancedb
|
15 |
from omeka_s_api_client import OmekaSClient, OmekaSClientError
|
16 |
from lancedb_client import LanceDBManager
|
17 |
|
@@ -24,11 +25,12 @@ _DEFAULT_PARSE_METADATA = (
|
|
24 |
'bibo:annotates','bibo:content', 'bibo:locator', 'bibo:owner'
|
25 |
)
|
26 |
|
27 |
-
app = dash.Dash(__name__, external_stylesheets=[dbc.themes.BOOTSTRAP])
|
28 |
app.config.suppress_callback_exceptions = True
|
29 |
server = app.server
|
30 |
manager = LanceDBManager()
|
31 |
|
|
|
32 |
french_stopwords = text.ENGLISH_STOP_WORDS.union([
|
33 |
"alors", "au", "aucuns", "aussi", "autre", "avant", "avec", "avoir", "bon",
|
34 |
"car", "ce", "cela", "ces", "ceux", "chaque", "ci", "comme", "comment", "dans",
|
@@ -46,58 +48,304 @@ french_stopwords = text.ENGLISH_STOP_WORDS.union([
|
|
46 |
])
|
47 |
|
48 |
# -------------------- Layout --------------------
|
49 |
-
app.layout =
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
55 |
dbc.Col([
|
56 |
-
html.
|
57 |
-
dcc.
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
63 |
|
64 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
65 |
html.H5("📁 From LanceDB"),
|
66 |
-
dbc.Button("Load
|
67 |
dcc.Dropdown(id="db-tables-dropdown", placeholder="Select an existing table"),
|
68 |
-
dbc.Button("Display Table", id="load-data-db", color="success", className="mt-2"),
|
69 |
-
|
|
|
70 |
|
71 |
-
|
72 |
-
html.H5("🔎 Query Tool (coming soon)"),
|
73 |
-
dbc.Input(placeholder="Type a search query...", type="text", disabled=True),
|
74 |
-
], md=4),
|
75 |
-
], className="mb-4"),
|
76 |
-
|
77 |
-
# Main plot area and metadata side panel
|
78 |
-
dbc.Row([
|
79 |
-
dbc.Col(
|
80 |
-
dcc.Graph(id="umap-graph", style={"height": "700px"}),
|
81 |
-
md=8
|
82 |
-
),
|
83 |
-
dbc.Col(
|
84 |
-
html.Div(id="point-details", style={
|
85 |
-
"padding": "15px",
|
86 |
-
"borderLeft": "1px solid #ccc",
|
87 |
-
"height": "700px",
|
88 |
-
"overflowY": "auto"
|
89 |
-
}),
|
90 |
-
md=4
|
91 |
-
),
|
92 |
-
]),
|
93 |
|
94 |
-
|
95 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
96 |
|
97 |
-
|
98 |
-
|
99 |
|
100 |
-
|
101 |
|
102 |
@app.callback(
|
103 |
Output("items-sets-dropdown", "options"),
|
@@ -106,7 +354,9 @@ app.layout = dbc.Container([
|
|
106 |
State("api-url", "value"),
|
107 |
prevent_initial_call=True
|
108 |
)
|
109 |
-
def load_item_sets(
|
|
|
|
|
110 |
client = OmekaSClient(base_url, "...", "...", 50)
|
111 |
try:
|
112 |
item_sets = client.list_all_item_sets()
|
@@ -120,108 +370,225 @@ def load_item_sets(n, base_url):
|
|
120 |
except Exception as e:
|
121 |
return dash.no_update, dash.no_update
|
122 |
|
|
|
123 |
@app.callback(
|
124 |
-
Output("db-tables-dropdown", "options"),
|
125 |
Input("load-tables", "n_clicks"),
|
126 |
prevent_initial_call=True
|
127 |
)
|
128 |
-
def list_tables(
|
129 |
-
|
|
|
|
|
|
|
130 |
|
|
|
131 |
@app.callback(
|
132 |
Output("umap-graph", "figure"),
|
133 |
Output("status", "children"),
|
134 |
-
Input("
|
135 |
-
Input("load-data-db", "n_clicks"), # From DB table
|
136 |
State("items-sets-dropdown", "value"),
|
137 |
State("omeka-client-config", "data"),
|
138 |
State("table-name", "value"),
|
139 |
-
State("db-tables-dropdown", "value"),
|
140 |
prevent_initial_call=True
|
141 |
)
|
142 |
-
def
|
143 |
-
|
144 |
-
print(triggered_id)
|
145 |
-
|
146 |
-
if triggered_id == "load-data": # Omeka S case
|
147 |
-
if not client_config:
|
148 |
-
raise PreventUpdate
|
149 |
-
|
150 |
-
client = OmekaSClient(
|
151 |
-
base_url=client_config["base_url"],
|
152 |
-
key_identity=client_config["key_identity"],
|
153 |
-
key_credential=client_config["key_credential"]
|
154 |
-
)
|
155 |
-
|
156 |
-
df_omeka = harvest_omeka_items(client, item_set_id=item_set_id)
|
157 |
-
items = df_omeka.to_dict(orient="records")
|
158 |
-
records_with_text = [helpers.add_concatenated_text_field_exclude_keys(item, keys_to_exclude=['id','images_urls'], text_field_key='text', pair_separator=' - ') for item in items]
|
159 |
-
df = helpers.prepare_df_atlas(pd.DataFrame(records_with_text), id_col='id', images_col='images_urls')
|
160 |
-
|
161 |
-
text_embed = helpers.generate_text_embed(df['text'].tolist())
|
162 |
-
img_embed = helpers.generate_img_embed(df['images_urls'].tolist())
|
163 |
-
embeddings = np.concatenate([text_embed, img_embed], axis=1)
|
164 |
-
df["embeddings"] = embeddings.tolist()
|
165 |
-
|
166 |
-
reducer = umap.UMAP(n_neighbors=15, min_dist=0.1, metric="cosine")
|
167 |
-
umap_embeddings = reducer.fit_transform(embeddings)
|
168 |
-
df["umap_embeddings"] = umap_embeddings.tolist()
|
169 |
-
|
170 |
-
clusterer = hdbscan.HDBSCAN(min_cluster_size=10)
|
171 |
-
cluster_labels = clusterer.fit_predict(umap_embeddings)
|
172 |
-
df["Cluster"] = cluster_labels
|
173 |
-
|
174 |
-
vectorizer = text.TfidfVectorizer(max_features=1000, stop_words=list(french_stopwords), lowercase=True)
|
175 |
-
tfidf_matrix = vectorizer.fit_transform(df["text"].astype(str).tolist())
|
176 |
-
top_words = []
|
177 |
-
for label in sorted(df["Cluster"].unique()):
|
178 |
-
if label == -1:
|
179 |
-
top_words.append("Noise")
|
180 |
-
continue
|
181 |
-
mask = (df["Cluster"] == label).to_numpy().nonzero()[0]
|
182 |
-
cluster_docs = tfidf_matrix[mask]
|
183 |
-
mean_tfidf = cluster_docs.mean(axis=0)
|
184 |
-
mean_tfidf = np.asarray(mean_tfidf).flatten()
|
185 |
-
top_indices = mean_tfidf.argsort()[::-1][:5]
|
186 |
-
terms = [vectorizer.get_feature_names_out()[i] for i in top_indices]
|
187 |
-
top_words.append(", ".join(terms))
|
188 |
-
cluster_name_map = {label: name for label, name in zip(sorted(df["Cluster"].unique()), top_words)}
|
189 |
-
df["Topic"] = df["Cluster"].map(cluster_name_map)
|
190 |
-
|
191 |
-
manager.initialize_table(table_name)
|
192 |
-
manager.add_entry(table_name, df.to_dict(orient="records"))
|
193 |
-
|
194 |
-
elif triggered_id == "load-data-db": # Load existing LanceDB table
|
195 |
-
if not db_table:
|
196 |
-
raise PreventUpdate
|
197 |
-
items = manager.get_content_table(db_table)
|
198 |
-
df = pd.DataFrame(items)
|
199 |
-
df = df.dropna(axis=1, how='all')
|
200 |
-
df = df.fillna('')
|
201 |
-
#umap_embeddings = np.array(df["umap_embeddings"].tolist())
|
202 |
-
|
203 |
-
else:
|
204 |
raise PreventUpdate
|
205 |
|
206 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
207 |
return create_umap_plot(df)
|
208 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
209 |
|
|
|
210 |
@app.callback(
|
211 |
Output("point-details", "children"),
|
212 |
-
Input("umap-graph", "
|
213 |
)
|
214 |
-
def show_point_details(
|
215 |
-
if not
|
216 |
-
return html.Div("🖱️
|
217 |
-
img_url, title, desc =
|
218 |
return html.Div([
|
219 |
-
html.H4(title),
|
220 |
-
html.
|
221 |
-
html.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
222 |
])
|
223 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
224 |
# -------------------- Utility --------------------
|
|
|
225 |
|
226 |
def harvest_omeka_items(client, item_set_id=None, per_page=50):
|
227 |
"""
|
@@ -235,52 +602,146 @@ def harvest_omeka_items(client, item_set_id=None, per_page=50):
|
|
235 |
"""
|
236 |
print("\n--- Fetching and Parsing Multiple Items by colection---")
|
237 |
try:
|
238 |
-
# Fetch
|
239 |
items_list = client.list_all_items(item_set_id=item_set_id, per_page=per_page)
|
240 |
-
print(items_list)
|
241 |
-
print(f"Fetched {len(items_list)} items.")
|
242 |
|
243 |
parsed_items_list = []
|
244 |
-
for item_raw in items_list:
|
245 |
-
|
|
|
|
|
|
|
|
|
|
|
246 |
parsed = client.digest_item_data(item_raw, prefixes=_DEFAULT_PARSE_METADATA)
|
247 |
-
if parsed:
|
248 |
-
|
249 |
-
|
250 |
-
|
251 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
252 |
media = client.get_media(media_id)
|
253 |
-
|
254 |
-
|
255 |
-
|
256 |
-
|
257 |
-
|
258 |
-
|
259 |
-
|
260 |
-
|
261 |
-
|
262 |
-
|
263 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
264 |
except OmekaSClientError as e:
|
265 |
-
print(f"
|
|
|
266 |
except Exception as e:
|
267 |
-
print(f"
|
|
|
|
|
|
|
|
|
268 |
|
269 |
def create_umap_plot(df):
|
270 |
coords = np.array(df["umap_embeddings"].tolist())
|
271 |
fig = px.scatter(
|
272 |
-
df,
|
273 |
-
|
274 |
-
|
|
|
|
|
275 |
hover_data=None,
|
276 |
-
title="UMAP Projection with HDBSCAN Topics"
|
|
|
|
|
|
|
277 |
)
|
|
|
278 |
fig.update_traces(
|
279 |
-
marker=dict(
|
280 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
281 |
)
|
282 |
-
|
283 |
return fig, f"Loaded {len(df)} items and projected into 2D."
|
284 |
|
285 |
if __name__ == "__main__":
|
286 |
-
app.run(
|
|
|
1 |
import dash
|
2 |
+
from dash import dcc, html, Input, Output, State, ctx, callback_context
|
3 |
+
from dash.exceptions import PreventUpdate
|
4 |
import dash_bootstrap_components as dbc
|
5 |
import plotly.express as px
|
6 |
+
import plotly.graph_objects as go
|
7 |
import pandas as pd
|
8 |
import numpy as np
|
9 |
import umap
|
10 |
import hdbscan
|
11 |
import sklearn.feature_extraction.text as text
|
12 |
from dash.exceptions import PreventUpdate
|
13 |
+
import json
|
14 |
from dotenv import load_dotenv
|
15 |
import helpers
|
|
|
16 |
from omeka_s_api_client import OmekaSClient, OmekaSClientError
|
17 |
from lancedb_client import LanceDBManager
|
18 |
|
|
|
25 |
'bibo:annotates','bibo:content', 'bibo:locator', 'bibo:owner'
|
26 |
)
|
27 |
|
28 |
+
app = dash.Dash(__name__, suppress_callback_exceptions=True, external_stylesheets=[dbc.themes.BOOTSTRAP])
|
29 |
app.config.suppress_callback_exceptions = True
|
30 |
server = app.server
|
31 |
manager = LanceDBManager()
|
32 |
|
33 |
+
|
34 |
french_stopwords = text.ENGLISH_STOP_WORDS.union([
|
35 |
"alors", "au", "aucuns", "aussi", "autre", "avant", "avec", "avoir", "bon",
|
36 |
"car", "ce", "cela", "ces", "ceux", "chaque", "ci", "comme", "comment", "dans",
|
|
|
48 |
])
|
49 |
|
50 |
# -------------------- Layout --------------------
|
51 |
+
app.layout = html.Div([
|
52 |
+
# Header
|
53 |
+
dbc.NavbarSimple(
|
54 |
+
children=[],
|
55 |
+
brand="Omeka S Computer Vision Asistant",
|
56 |
+
brand_href="/",
|
57 |
+
color="light",
|
58 |
+
dark=False,
|
59 |
+
className="mb-4 shadow-sm border-bottom"
|
60 |
+
),
|
61 |
+
|
62 |
+
# Main Container
|
63 |
+
dbc.Container(fluid=True, children=[
|
64 |
+
dbc.Row([
|
65 |
+
# Left column - Controls
|
66 |
+
dbc.Col(width=6, children=[
|
67 |
+
dbc.Card([
|
68 |
+
dbc.CardHeader(html.H4("Data Loading and ploting", className="text-center")),
|
69 |
+
dbc.CardBody([
|
70 |
+
|
71 |
+
# Tabs
|
72 |
+
dcc.Tabs(id="data-tabs", value="api", children=[
|
73 |
+
dcc.Tab(label="🔍 From Omeka S", value="omeka"),
|
74 |
+
dcc.Tab(label="📁 From LanceDB", value="lance")
|
75 |
+
]),
|
76 |
+
|
77 |
+
html.Div(id="data-tab-content"),
|
78 |
+
|
79 |
+
html.Br(),
|
80 |
+
])
|
81 |
+
], className="mb-4 shadow-sm")
|
82 |
+
]),
|
83 |
+
# Right column - Explanations
|
84 |
+
dbc.Col(width=6, children=[
|
85 |
+
dbc.Card([
|
86 |
+
dbc.CardHeader(
|
87 |
+
html.H4(
|
88 |
+
dbc.Button("Explanations", color="primary", id="explanation-toggle", n_clicks=0),
|
89 |
+
className="text-center"
|
90 |
+
)
|
91 |
+
),
|
92 |
+
dbc.Collapse(
|
93 |
+
dbc.CardBody([
|
94 |
+
html.P("This application allows you to explore Omeka S collections through interactive visualization."),
|
95 |
+
html.P("You can load data in two ways:"),
|
96 |
+
html.P("1. From Omeka S: Connect to your Omeka S instance and select a collection to visualize."),
|
97 |
+
html.P("2. From LanceDB: Load previously processed collections from the local database."),
|
98 |
+
html.P("The visualization uses UMAP projection and topic clustering to create an interactive map of your collection."),
|
99 |
+
html.P("You can explore items by hovering over points and search using semantic queries."),
|
100 |
+
]),
|
101 |
+
id="explanation-collapse",
|
102 |
+
is_open=False
|
103 |
+
)
|
104 |
+
], className="mb-4 shadow-sm")
|
105 |
+
])
|
106 |
+
]),
|
107 |
+
|
108 |
+
html.Br(),
|
109 |
+
dbc.Row([
|
110 |
+
dbc.Col([
|
111 |
+
dbc.InputGroup([
|
112 |
+
dbc.Input(
|
113 |
+
id="search-input",
|
114 |
+
type="text",
|
115 |
+
placeholder="Search...",
|
116 |
+
),
|
117 |
+
dbc.Button(
|
118 |
+
"Search",
|
119 |
+
id="search-button",
|
120 |
+
color="primary",
|
121 |
+
size="sm",
|
122 |
+
),
|
123 |
+
dbc.Button(
|
124 |
+
"Clear",
|
125 |
+
id="clear-button",
|
126 |
+
color="secondary",
|
127 |
+
size="sm",
|
128 |
+
),
|
129 |
+
], className="d-flex align-items-center")
|
130 |
+
], width={"size": 6, "offset": 3}), # Center the input group and make it half width
|
131 |
+
], className="mb-3"),
|
132 |
+
dbc.Row([
|
133 |
dbc.Col([
|
134 |
+
html.Label("Number of results:", className="mb-0"),
|
135 |
+
dcc.Slider(
|
136 |
+
id="search-limit-slider",
|
137 |
+
min=1,
|
138 |
+
max=50,
|
139 |
+
step=1,
|
140 |
+
value=5,
|
141 |
+
marks={i: str(i) for i in range(1, 51, 1)},
|
142 |
+
className="mt-1"
|
143 |
+
),
|
144 |
+
], width={"size": 6, "offset": 3}),
|
145 |
+
], className="mb-3"),
|
146 |
+
html.Br(),
|
147 |
+
# Central Visualization (like scatter plot, map etc.)
|
148 |
+
dbc.Row([
|
149 |
+
html.Div([
|
150 |
+
dbc.Spinner(
|
151 |
+
id="loading-spinner",
|
152 |
+
type="grow",
|
153 |
+
color="primary",
|
154 |
+
fullscreen=False,
|
155 |
+
children=[
|
156 |
+
# Add a placeholder div
|
157 |
+
html.Div(
|
158 |
+
id="graph-placeholder",
|
159 |
+
children="Select a data source and load data to visualize",
|
160 |
+
style={
|
161 |
+
"height": "700px",
|
162 |
+
"display": "flex",
|
163 |
+
"alignItems": "center",
|
164 |
+
"justifyContent": "center",
|
165 |
+
"color": "#666",
|
166 |
+
"fontSize": "1.2rem",
|
167 |
+
"fontStyle": "italic",
|
168 |
+
"width": "900px" # Set width to 70%
|
169 |
+
}
|
170 |
+
),
|
171 |
+
dcc.Graph(
|
172 |
+
id="umap-graph",
|
173 |
+
style={
|
174 |
+
"width": "900px", # Set width to 70%
|
175 |
+
"height": "700px",
|
176 |
+
"display": "none"
|
177 |
+
},
|
178 |
+
config={
|
179 |
+
'scrollZoom': True,
|
180 |
+
'displayModeBar': True,
|
181 |
+
'modeBarButtonsToAdd': ['drawline']
|
182 |
+
}
|
183 |
+
)],
|
184 |
+
),
|
185 |
+
html.Div(id="point-details",
|
186 |
+
style={
|
187 |
+
"width": "30%", # Set width to 30%
|
188 |
+
"padding": "15px",
|
189 |
+
"borderLeft": "1px solid #ccc",
|
190 |
+
"overflowY": "auto",
|
191 |
+
"height": "700px",
|
192 |
+
"minWidth": "250px",
|
193 |
+
"maxWidth": "30%" # Match the width
|
194 |
+
}),
|
195 |
+
],
|
196 |
+
style={
|
197 |
+
"display": "flex",
|
198 |
+
"flexDirection": "row",
|
199 |
+
"width": "100%",
|
200 |
+
"gap": "10px",
|
201 |
+
"justifyContent": "space-between"
|
202 |
+
}),
|
203 |
+
]),
|
204 |
+
html.Div(id="status"),
|
205 |
+
dcc.Store(id="omeka-client-config", storage_type="session"),
|
206 |
+
]),
|
207 |
+
|
208 |
+
# Footer
|
209 |
+
html.Footer([
|
210 |
+
html.Hr(),
|
211 |
+
dbc.Container([
|
212 |
+
dbc.Row([
|
213 |
+
dbc.Col([
|
214 |
+
html.Img(src="SmartBibl.IA_Solutions.png", height="50"),
|
215 |
+
html.Small([
|
216 |
+
html.Br(),
|
217 |
+
html.A("Géraldine Geoffroy", href="mailto:grldn.geoffroy@gmail.com", className="text-muted")
|
218 |
+
])
|
219 |
+
]),
|
220 |
+
dbc.Col([
|
221 |
+
html.H5("Code source"),
|
222 |
+
html.Ul([
|
223 |
+
html.Li(html.A("Github", href="https://github.com/gegedenice/openalex-explorer", className="text-muted", target="_blank"))
|
224 |
+
])
|
225 |
+
]),
|
226 |
+
dbc.Col([
|
227 |
+
html.H5("Ressources"),
|
228 |
+
html.Ul([
|
229 |
+
html.Li(html.A("Nomic Atlas", href="https://atlas.nomic.ai/", target="_blank", className="text-muted")),
|
230 |
+
html.Li(html.A("Model nomic-embed-text-v1.5", href="https://huggingface.co/nomic-ai/nomic-embed-text-v1.5", target="_blank", className="text-muted")),
|
231 |
+
html.Li(html.A("Model nomic-embed-vision-v1.5", href="https://huggingface.co/nomic-ai/nomic-embed-vision-v1.5", target="_blank", className="text-muted"))
|
232 |
+
])
|
233 |
+
])
|
234 |
+
])
|
235 |
+
])
|
236 |
+
], className="mt-5 p-3 bg-light border-top")
|
237 |
+
])
|
238 |
|
239 |
+
# -------------------- UI Callbacks --------------------
|
240 |
+
# ------------------------------------------------------
|
241 |
+
|
242 |
+
##-------------------- Tabs Callbacks --------------------
|
243 |
+
@app.callback(
|
244 |
+
Output("data-tab-content", "children"),
|
245 |
+
Input("data-tabs", "value")
|
246 |
+
)
|
247 |
+
def render_tab_content(tab):
|
248 |
+
if tab == "omeka":
|
249 |
+
return html.Div([
|
250 |
+
html.Div([
|
251 |
+
html.H5("🔍 From Omeka S", className="mb-3"),
|
252 |
+
# API URL input with full width
|
253 |
+
dbc.InputGroup([
|
254 |
+
dbc.Input(
|
255 |
+
id="api-url",
|
256 |
+
value="https://your-omeka-instance.org",
|
257 |
+
type="url",
|
258 |
+
placeholder="Enter your Omeka S instance URL",
|
259 |
+
className="mb-2"
|
260 |
+
),
|
261 |
+
]),
|
262 |
+
# Buttons and dropdowns container
|
263 |
+
dbc.Container([
|
264 |
+
dbc.Row([
|
265 |
+
dbc.Col([
|
266 |
+
dbc.Button(
|
267 |
+
"Load Item Sets",
|
268 |
+
id="load-sets",
|
269 |
+
color="link",
|
270 |
+
size="sm",
|
271 |
+
className="w-100 mb-2"
|
272 |
+
),
|
273 |
+
]),
|
274 |
+
]),
|
275 |
+
dbc.Row([
|
276 |
+
dbc.Col([
|
277 |
+
dcc.Dropdown(
|
278 |
+
id="items-sets-dropdown",
|
279 |
+
placeholder="Select a collection",
|
280 |
+
className="mb-2"
|
281 |
+
),
|
282 |
+
]),
|
283 |
+
]),
|
284 |
+
dbc.Row([
|
285 |
+
dbc.Col([
|
286 |
+
dbc.Input(
|
287 |
+
id="table-name",
|
288 |
+
value="Enter a table name for data storage",
|
289 |
+
type="text",
|
290 |
+
placeholder="New table name",
|
291 |
+
className="mb-2"
|
292 |
+
),
|
293 |
+
]),
|
294 |
+
]),
|
295 |
+
dbc.Row([
|
296 |
+
dbc.Col([
|
297 |
+
dbc.Button(
|
298 |
+
"Process Omeka Collection",
|
299 |
+
id="process-omeka",
|
300 |
+
color="success",
|
301 |
+
size="sm",
|
302 |
+
className="mt-2"
|
303 |
+
),
|
304 |
+
]),
|
305 |
+
]),
|
306 |
+
], fluid=True, className="p-0"),
|
307 |
+
], className="p-3"),
|
308 |
+
], className="border rounded bg-white shadow-sm")
|
309 |
+
elif tab == "lance":
|
310 |
+
return html.Div([
|
311 |
html.H5("📁 From LanceDB"),
|
312 |
+
dbc.Button("Load LanceDB tables", id="load-tables", color="link", size="sm", className="mt-2"),
|
313 |
dcc.Dropdown(id="db-tables-dropdown", placeholder="Select an existing table"),
|
314 |
+
dbc.Button("Display Table", id="load-data-db", color="success", size="sm", className="mt-2"),
|
315 |
+
dbc.Button("Drop Table", id="drop-data-db", color="danger", size="sm", className="mt-2"),
|
316 |
+
])
|
317 |
|
318 |
+
return html.Div("Invalid tab selected.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
319 |
|
320 |
+
# -------------------- Collpase callback --------------------
|
321 |
+
@app.callback(
|
322 |
+
Output("explanation-collapse", "is_open"),
|
323 |
+
Input("explanation-toggle", "n_clicks"),
|
324 |
+
prevent_initial_call=True
|
325 |
+
)
|
326 |
+
def toggle_collapse(n):
|
327 |
+
return n % 2 == 1
|
328 |
+
|
329 |
+
# -------------------- Graph placeholder Toggle callback --------------------
|
330 |
+
@app.callback(
|
331 |
+
Output("graph-placeholder", "style"),
|
332 |
+
Output("umap-graph", "style"),
|
333 |
+
[Input("umap-graph", "figure")],
|
334 |
+
prevent_initial_call=True
|
335 |
+
)
|
336 |
+
def toggle_graph_visibility(figure):
|
337 |
+
if figure is None:
|
338 |
+
return {"display": "flex"}, {"display": "none"}
|
339 |
+
return {"display": "none"}, {
|
340 |
+
"flex": 3,
|
341 |
+
"width": "100%",
|
342 |
+
"display": "block"
|
343 |
+
}
|
344 |
|
345 |
+
# -------------------- Features Callbacks --------------------
|
346 |
+
# ------------------------------------------------------------
|
347 |
|
348 |
+
## -------------------- Load Omeka collections callback--------------------
|
349 |
|
350 |
@app.callback(
|
351 |
Output("items-sets-dropdown", "options"),
|
|
|
354 |
State("api-url", "value"),
|
355 |
prevent_initial_call=True
|
356 |
)
|
357 |
+
def load_item_sets(n_clicks, base_url):
|
358 |
+
if n_clicks is None: # Add this check
|
359 |
+
raise PreventUpdate
|
360 |
client = OmekaSClient(base_url, "...", "...", 50)
|
361 |
try:
|
362 |
item_sets = client.list_all_item_sets()
|
|
|
370 |
except Exception as e:
|
371 |
return dash.no_update, dash.no_update
|
372 |
|
373 |
+
## -------------------- Load LanceDB tables callback--------------------
|
374 |
@app.callback(
|
375 |
+
Output("db-tables-dropdown", "options", allow_duplicate=True),
|
376 |
Input("load-tables", "n_clicks"),
|
377 |
prevent_initial_call=True
|
378 |
)
|
379 |
+
def list_tables(n_clicks):
|
380 |
+
if not n_clicks:
|
381 |
+
raise PreventUpdate
|
382 |
+
tables = manager.list_tables()
|
383 |
+
return [{"label": t, "value": t} for t in tables]
|
384 |
|
385 |
+
## -------------------- Load & Process Omeka items callback--------------------
|
386 |
@app.callback(
|
387 |
Output("umap-graph", "figure"),
|
388 |
Output("status", "children"),
|
389 |
+
Input("process-omeka", "n_clicks"), # Changed ID to match new button
|
|
|
390 |
State("items-sets-dropdown", "value"),
|
391 |
State("omeka-client-config", "data"),
|
392 |
State("table-name", "value"),
|
|
|
393 |
prevent_initial_call=True
|
394 |
)
|
395 |
+
def handle_omeka_data(n_clicks, item_set_id, client_config, table_name):
|
396 |
+
if not n_clicks or not client_config:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
397 |
raise PreventUpdate
|
398 |
|
399 |
+
client = OmekaSClient(
|
400 |
+
base_url=client_config["base_url"],
|
401 |
+
key_identity=client_config["key_identity"],
|
402 |
+
key_credential=client_config["key_credential"]
|
403 |
+
)
|
404 |
+
|
405 |
+
df_omeka = harvest_omeka_items(client, item_set_id=item_set_id)
|
406 |
+
items = df_omeka.to_dict(orient="records")
|
407 |
+
records_with_text = [helpers.add_concatenated_text_field_exclude_keys(item, keys_to_exclude=['id','images_urls'], text_field_key='text', pair_separator=' - ') for item in items]
|
408 |
+
df = helpers.prepare_df_atlas(pd.DataFrame(records_with_text), id_col='id', images_col='images_urls')
|
409 |
+
|
410 |
+
text_embed = helpers.generate_text_embed(df['text'].tolist())
|
411 |
+
img_embed = helpers.generate_img_embed(df['images_urls'].tolist())
|
412 |
+
embeddings = (text_embed + img_embed) / 2 # Average the embeddings
|
413 |
+
df["embeddings"] = embeddings.tolist()
|
414 |
+
|
415 |
+
reducer = umap.UMAP(n_neighbors=15, min_dist=0.1, n_components=2, metric='cosine', random_state=42)
|
416 |
+
umap_embeddings = reducer.fit_transform(embeddings)
|
417 |
+
df["umap_embeddings"] = umap_embeddings.tolist()
|
418 |
+
|
419 |
+
clusterer = hdbscan.HDBSCAN(min_cluster_size=10)
|
420 |
+
cluster_labels = clusterer.fit_predict(umap_embeddings)
|
421 |
+
df["Cluster"] = cluster_labels
|
422 |
+
|
423 |
+
vectorizer = text.TfidfVectorizer(max_features=1000, stop_words=list(french_stopwords), lowercase=True)
|
424 |
+
tfidf_matrix = vectorizer.fit_transform(df["text"].astype(str).tolist())
|
425 |
+
top_words = []
|
426 |
+
for label in sorted(df["Cluster"].unique()):
|
427 |
+
if label == -1:
|
428 |
+
top_words.append("Noise")
|
429 |
+
continue
|
430 |
+
mask = (df["Cluster"] == label).to_numpy().nonzero()[0]
|
431 |
+
cluster_docs = tfidf_matrix[mask]
|
432 |
+
mean_tfidf = cluster_docs.mean(axis=0)
|
433 |
+
mean_tfidf = np.asarray(mean_tfidf).flatten()
|
434 |
+
top_indices = mean_tfidf.argsort()[::-1][:5]
|
435 |
+
terms = [vectorizer.get_feature_names_out()[i] for i in top_indices]
|
436 |
+
top_words.append(", ".join(terms))
|
437 |
+
cluster_name_map = {label: name for label, name in zip(sorted(df["Cluster"].unique()), top_words)}
|
438 |
+
df["Topic"] = df["Cluster"].map(cluster_name_map)
|
439 |
+
|
440 |
+
manager.initialize_table(table_name)
|
441 |
+
manager.add_entry(table_name, df.to_dict(orient="records"))
|
442 |
+
|
443 |
return create_umap_plot(df)
|
444 |
|
445 |
+
## -------------------- Load LanceDB data callback--------------------
|
446 |
+
@app.callback(
|
447 |
+
Output("umap-graph", "figure", allow_duplicate=True),
|
448 |
+
Output("status", "children", allow_duplicate=True),
|
449 |
+
Input("load-data-db", "n_clicks"),
|
450 |
+
State("db-tables-dropdown", "value"),
|
451 |
+
prevent_initial_call=True
|
452 |
+
)
|
453 |
+
def handle_db_data(n_clicks, db_table):
|
454 |
+
if not n_clicks or not db_table:
|
455 |
+
raise PreventUpdate
|
456 |
+
|
457 |
+
items = manager.get_content_table(db_table)
|
458 |
+
df = pd.DataFrame(items)
|
459 |
+
df = df.dropna(axis=1, how='all')
|
460 |
+
df = df.fillna('')
|
461 |
+
#umap_embeddings = np.array(df["umap_embeddings"].tolist())
|
462 |
+
return create_umap_plot(df)
|
463 |
|
464 |
+
## -------------------- plotly Hover datapoint callback--------------------
|
465 |
@app.callback(
|
466 |
Output("point-details", "children"),
|
467 |
+
Input("umap-graph", "hoverData")
|
468 |
)
|
469 |
+
def show_point_details(hoverData):
|
470 |
+
if not hoverData:
|
471 |
+
return html.Div("🖱️ Hover a point to see more details.", style={"color": "#888"})
|
472 |
+
id,item_id, img_url, title, desc = hoverData["points"][0]["customdata"]
|
473 |
return html.Div([
|
474 |
+
html.H4(title, style={"fontSize": "1.2rem"}), # Reduced header size
|
475 |
+
html.P(f"Item ID: {item_id}", style={"fontSize": "0.9rem", "color": "#666"}), # Smaller text
|
476 |
+
html.Img(src=img_url, style={
|
477 |
+
"maxWidth": "300px", # Fixed max width instead of 100%
|
478 |
+
"height": "auto", # Maintain aspect ratio
|
479 |
+
"marginBottom": "10px",
|
480 |
+
"borderRadius": "5px",
|
481 |
+
"boxShadow": "0 2px 4px rgba(0,0,0,0.1)"
|
482 |
+
}),
|
483 |
+
html.P(desc or "No description available.",
|
484 |
+
style={"lineHeight": "1.6", "color": "#444", "fontSize": "0.9rem"}) # Smaller text
|
485 |
])
|
486 |
|
487 |
+
## -------------------- Search & filter datapoint callback--------------------
|
488 |
+
@app.callback(
|
489 |
+
Output("umap-graph", "figure", allow_duplicate=True),
|
490 |
+
Input("search-button", "n_clicks"),
|
491 |
+
Input("search-limit-slider", "value"), # Add slider input
|
492 |
+
State("search-input", "value"),
|
493 |
+
State("db-tables-dropdown", "value"),
|
494 |
+
State("umap-graph", "figure"),
|
495 |
+
prevent_initial_call=True
|
496 |
+
)
|
497 |
+
def filter_points(n_clicks, limit, search_query, table, current_fig):
|
498 |
+
# Get the trigger that caused the callback
|
499 |
+
trigger = ctx.triggered_id
|
500 |
+
|
501 |
+
# If slider changed but no search query exists, don't update
|
502 |
+
if trigger == "search-limit-slider" and not search_query:
|
503 |
+
return dash.no_update
|
504 |
+
|
505 |
+
if not search_query:
|
506 |
+
# Reset visibility of all points
|
507 |
+
for trace in current_fig['data']:
|
508 |
+
trace['visible'] = True
|
509 |
+
return current_fig
|
510 |
+
|
511 |
+
# Generate text embedding
|
512 |
+
query_embed = helpers.generate_text_embed([f"search_query: {search_query}"]).tolist()
|
513 |
+
|
514 |
+
# Perform semantic search using the slider value
|
515 |
+
matching = manager.semantic_search(
|
516 |
+
table_name=table,
|
517 |
+
query_embed=query_embed,
|
518 |
+
limit=limit # Use the slider value
|
519 |
+
)
|
520 |
+
|
521 |
+
matching_ids = [item['id'] for item in json.loads(matching)]
|
522 |
+
print(f"Searching for '{search_query}' with limit {limit}")
|
523 |
+
print(f"Found {len(matching_ids)} matches")
|
524 |
+
|
525 |
+
# Update visibility of points
|
526 |
+
fig = go.Figure(current_fig)
|
527 |
+
for trace in fig.data:
|
528 |
+
point_ids = [point[0] for point in trace['customdata']]
|
529 |
+
selected_indices = [i for i, id in enumerate(point_ids) if id in matching_ids]
|
530 |
+
trace.update(
|
531 |
+
selectedpoints=selected_indices,
|
532 |
+
unselected=dict(marker=dict(opacity=0.1))
|
533 |
+
)
|
534 |
+
|
535 |
+
return fig
|
536 |
+
|
537 |
+
## -------------------- Clear search callback--------------------
|
538 |
+
@app.callback(
|
539 |
+
Output("umap-graph", "figure", allow_duplicate=True),
|
540 |
+
Output("search-input", "value"), # Clear the search input
|
541 |
+
Input("clear-button", "n_clicks"),
|
542 |
+
State("umap-graph", "figure"),
|
543 |
+
prevent_initial_call=True
|
544 |
+
)
|
545 |
+
def clear_search(n_clicks, current_fig):
|
546 |
+
if not n_clicks:
|
547 |
+
raise PreventUpdate
|
548 |
+
|
549 |
+
fig = go.Figure(current_fig)
|
550 |
+
|
551 |
+
# Reset all points to visible and full opacity
|
552 |
+
for trace in fig.data:
|
553 |
+
trace.update(
|
554 |
+
selectedpoints=None,
|
555 |
+
unselected=None,
|
556 |
+
opacity=0.8
|
557 |
+
)
|
558 |
+
|
559 |
+
return fig, "" # Return cleared figure and empty search input
|
560 |
+
|
561 |
+
## -------------------- Load LanceDB data callback--------------------
|
562 |
+
@app.callback(
|
563 |
+
Output("db-tables-dropdown", "options",allow_duplicate=True), # Update dropdown options
|
564 |
+
Output("status", "children",allow_duplicate=True), # Show status message
|
565 |
+
Output("db-tables-dropdown", "value",allow_duplicate=True), # Clear current selection
|
566 |
+
Input("drop-data-db", "n_clicks"),
|
567 |
+
State("db-tables-dropdown", "value"),
|
568 |
+
prevent_initial_call=True
|
569 |
+
)
|
570 |
+
def drop_db_data(n_clicks, db_table):
|
571 |
+
if not n_clicks or not db_table:
|
572 |
+
raise PreventUpdate
|
573 |
+
|
574 |
+
try:
|
575 |
+
# Delete the table
|
576 |
+
success = manager.drop_table(db_table)
|
577 |
+
|
578 |
+
if success:
|
579 |
+
# Get updated list of tables
|
580 |
+
tables = manager.list_tables()
|
581 |
+
options = [{"label": t, "value": t} for t in tables]
|
582 |
+
return options, f"Table '{db_table}' successfully deleted", None
|
583 |
+
else:
|
584 |
+
return dash.no_update, f"Failed to delete table '{db_table}'", dash.no_update
|
585 |
+
|
586 |
+
except Exception as e:
|
587 |
+
print(f"Error dropping table: {str(e)}")
|
588 |
+
return dash.no_update, f"Error: {str(e)}", dash.no_update
|
589 |
+
|
590 |
# -------------------- Utility --------------------
|
591 |
+
# -------------------------------------------------
|
592 |
|
593 |
def harvest_omeka_items(client, item_set_id=None, per_page=50):
|
594 |
"""
|
|
|
602 |
"""
|
603 |
print("\n--- Fetching and Parsing Multiple Items by colection---")
|
604 |
try:
|
605 |
+
# Fetch items
|
606 |
items_list = client.list_all_items(item_set_id=item_set_id, per_page=per_page)
|
607 |
+
print(f"Initial fetch: {len(items_list)} items")
|
|
|
608 |
|
609 |
parsed_items_list = []
|
610 |
+
for idx, item_raw in enumerate(items_list):
|
611 |
+
try:
|
612 |
+
print(f"\nProcessing item {idx + 1}/{len(items_list)}")
|
613 |
+
if 'o:media' not in item_raw:
|
614 |
+
print(f"Skipping item {idx + 1}: No media found")
|
615 |
+
continue
|
616 |
+
|
617 |
parsed = client.digest_item_data(item_raw, prefixes=_DEFAULT_PARSE_METADATA)
|
618 |
+
if not parsed:
|
619 |
+
print(f"Skipping item {idx + 1}: Parsing failed")
|
620 |
+
continue
|
621 |
+
|
622 |
+
# Debug media processing
|
623 |
+
medias_id = [x["o:id"] for x in item_raw["o:media"]]
|
624 |
+
print(f"Found {len(medias_id)} media items")
|
625 |
+
|
626 |
+
medias_list = []
|
627 |
+
for media_id in medias_id:
|
628 |
+
try:
|
629 |
media = client.get_media(media_id)
|
630 |
+
print(f"Media type: {media.get('o:media_type', 'unknown')}")
|
631 |
+
if "image" in media.get("o:media_type", ""):
|
632 |
+
url = media.get('o:original_url')
|
633 |
+
if url:
|
634 |
+
medias_list.append(url)
|
635 |
+
else:
|
636 |
+
print(f"No URL found for media {media_id}")
|
637 |
+
except Exception as e:
|
638 |
+
print(f"Error processing media {media_id}: {str(e)}")
|
639 |
+
|
640 |
+
if medias_list:
|
641 |
+
parsed["images_urls"] = medias_list
|
642 |
+
parsed_items_list.append(parsed)
|
643 |
+
print(f"Added item with {len(medias_list)} images")
|
644 |
+
else:
|
645 |
+
print(f"Skipping item {idx + 1}: No valid image URLs found")
|
646 |
+
|
647 |
+
except Exception as e:
|
648 |
+
print(f"Error processing item {idx + 1}: {str(e)}")
|
649 |
+
print(f"Item raw data: {item_raw}")
|
650 |
+
continue
|
651 |
+
|
652 |
+
if not parsed_items_list:
|
653 |
+
print("No valid items were parsed!")
|
654 |
+
return None
|
655 |
+
|
656 |
+
print(f"\nFinal results:")
|
657 |
+
print(f"Total items processed: {len(items_list)}")
|
658 |
+
print(f"Successfully parsed items: {len(parsed_items_list)}")
|
659 |
+
|
660 |
+
df = pd.DataFrame(parsed_items_list)
|
661 |
+
print(f"DataFrame columns: {df.columns.tolist()}")
|
662 |
+
print(f"DataFrame shape: {df.shape}")
|
663 |
+
return df
|
664 |
+
|
665 |
except OmekaSClientError as e:
|
666 |
+
print(f"Omeka client error: {str(e)}")
|
667 |
+
return None
|
668 |
except Exception as e:
|
669 |
+
print(f"Unexpected error: {str(e)}")
|
670 |
+
print(f"Error type: {type(e)}")
|
671 |
+
import traceback
|
672 |
+
print(f"Traceback:\n{traceback.format_exc()}")
|
673 |
+
return None
|
674 |
|
675 |
def create_umap_plot(df):
|
676 |
coords = np.array(df["umap_embeddings"].tolist())
|
677 |
fig = px.scatter(
|
678 |
+
df,
|
679 |
+
x=coords[:, 0],
|
680 |
+
y=coords[:, 1],
|
681 |
+
color="Topic", # Start with top-level topics
|
682 |
+
custom_data=[df["id"], df["item_id"], df["images_urls"], df["Title"], df["Description"]],
|
683 |
hover_data=None,
|
684 |
+
title="UMAP Projection with HDBSCAN Topics",
|
685 |
+
color_discrete_sequence=px.colors.qualitative.D3,
|
686 |
+
width=900,
|
687 |
+
height=700,
|
688 |
)
|
689 |
+
# Update marker style
|
690 |
fig.update_traces(
|
691 |
+
marker=dict(
|
692 |
+
size=12, # Larger points
|
693 |
+
opacity=0.8, # Slight transparency
|
694 |
+
line=dict(width=0), # Remove borders
|
695 |
+
symbol='circle'
|
696 |
+
),
|
697 |
+
hoverinfo='none', # Disable native hover
|
698 |
+
hovertemplate=None
|
699 |
+
#hovertemplate="<b>%{customdata[1]}</b><br><img src='%{customdata[0]}' height='150'><extra></extra>"
|
700 |
+
)
|
701 |
+
|
702 |
+
# Convert to a go.Figure object to access additional configuration
|
703 |
+
fig = go.Figure(fig)
|
704 |
+
|
705 |
+
# Update layout including scroll zoom
|
706 |
+
fig.update_layout(
|
707 |
+
plot_bgcolor='white',
|
708 |
+
paper_bgcolor='white',
|
709 |
+
height=700,
|
710 |
+
margin=dict(t=30, b=30, l=30, r=30),
|
711 |
+
showlegend=False,
|
712 |
+
legend=dict(
|
713 |
+
yanchor="top",
|
714 |
+
y=0.99,
|
715 |
+
xanchor="right",
|
716 |
+
x=0.99,
|
717 |
+
bgcolor='rgba(255,255,255,0.8)',
|
718 |
+
bordercolor='rgba(0,0,0,0)'
|
719 |
+
),
|
720 |
+
xaxis=dict(
|
721 |
+
showgrid=False,
|
722 |
+
zeroline=False,
|
723 |
+
showline=False,
|
724 |
+
showticklabels=False,
|
725 |
+
fixedrange=False
|
726 |
+
),
|
727 |
+
yaxis=dict(
|
728 |
+
showgrid=False,
|
729 |
+
zeroline=False,
|
730 |
+
showline=False,
|
731 |
+
showticklabels=False,
|
732 |
+
fixedrange=False
|
733 |
+
),
|
734 |
+
dragmode='pan',
|
735 |
+
modebar_add=[
|
736 |
+
'zoom',
|
737 |
+
'pan',
|
738 |
+
'zoomIn',
|
739 |
+
'zoomOut',
|
740 |
+
'resetScale'
|
741 |
+
],
|
742 |
)
|
743 |
+
|
744 |
return fig, f"Loaded {len(df)} items and projected into 2D."
|
745 |
|
746 |
if __name__ == "__main__":
|
747 |
+
app.run(port=7860)
|