Canstralian commited on
Commit
c946e64
·
verified ·
1 Parent(s): 59da46e

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +1 -41
app.py CHANGED
@@ -1,48 +1,8 @@
1
- import gradio as gr
2
- import pandas as pd
3
- import plotly.express as px
4
- from transformers import pipeline
5
- from datasets import load_dataset
6
-
7
- # Load the additional datasets
8
- deepseek_prover_v1 = load_dataset('deepseek-ai/DeepSeek-Prover-V1', split='train')
9
- cybersecurity_kg = load_dataset('CyberPeace-Institute/Cybersecurity-Knowledge-Graph', split='train')
10
- codesearchnet_pep8 = load_dataset('kejian/codesearchnet-python-pep8-v1', split='train')
11
- code_text_python = load_dataset('semeru/code-text-python', split='train')
12
-
13
- # Sample CVE data (for visualization)
14
- cve_data = {
15
- 'CVE ID': ['CVE-2023-0001', 'CVE-2023-0002', 'CVE-2023-0003', 'CVE-2023-0004', 'CVE-2023-0005'],
16
- 'Severity': ['High', 'Medium', 'Low', 'High', 'Medium'],
17
- 'Description': [
18
- 'A critical vulnerability in the web application framework.',
19
- 'A medium-severity vulnerability in the database management system.',
20
- 'A low-severity vulnerability in the network firewall.',
21
- 'A critical vulnerability in the operating system kernel.',
22
- 'A medium-severity vulnerability in the web server.'
23
- ],
24
- 'Published Date': ['2023-01-01', '2023-01-02', '2023-01-03', '2023-01-04', '2023-01-05']
25
- }
26
-
27
- # Convert CVE data to a DataFrame
28
- cve_df = pd.DataFrame(cve_data)
29
-
30
- # Function to filter CVEs by severity
31
- def filter_cves(severity):
32
- filtered_df = cve_df[cve_df['Severity'] == severity]
33
- return filtered_df
34
-
35
  # Function to generate a bar chart of CVEs by severity
36
  def generate_cve_chart():
37
  fig = px.bar(cve_df, x='Severity', y='CVE ID', color='Severity', title='CVEs by Severity')
38
  return fig
39
 
40
- # Function to analyze the sentiment of a CVE description
41
- def analyze_sentiment(description):
42
- sentiment_pipeline = pipeline('sentiment-analysis')
43
- result = sentiment_pipeline(description)
44
- return result
45
-
46
  # Create the Gradio app
47
  with gr.Blocks() as demo:
48
  # Title and description
@@ -60,7 +20,7 @@ with gr.Blocks() as demo:
60
  # CVE Chart
61
  with gr.Row():
62
  cve_chart = gr.Plot(label='CVEs by Severity')
63
- cve_chart.update(generate_cve_chart())
64
 
65
  # Sentiment Analysis
66
  with gr.Row():
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  # Function to generate a bar chart of CVEs by severity
2
  def generate_cve_chart():
3
  fig = px.bar(cve_df, x='Severity', y='CVE ID', color='Severity', title='CVEs by Severity')
4
  return fig
5
 
 
 
 
 
 
 
6
  # Create the Gradio app
7
  with gr.Blocks() as demo:
8
  # Title and description
 
20
  # CVE Chart
21
  with gr.Row():
22
  cve_chart = gr.Plot(label='CVEs by Severity')
23
+ cve_chart.value = generate_cve_chart() # Directly assign the figure to the Plot component
24
 
25
  # Sentiment Analysis
26
  with gr.Row():