Canstralian commited on
Commit
59da46e
·
verified ·
1 Parent(s): 3d3f0d5

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +21 -4
app.py CHANGED
@@ -2,8 +2,15 @@ import gradio as gr
2
  import pandas as pd
3
  import plotly.express as px
4
  from transformers import pipeline
 
5
 
6
- # Sample data for CVEs
 
 
 
 
 
 
7
  cve_data = {
8
  'CVE ID': ['CVE-2023-0001', 'CVE-2023-0002', 'CVE-2023-0003', 'CVE-2023-0004', 'CVE-2023-0005'],
9
  'Severity': ['High', 'Medium', 'Low', 'High', 'Medium'],
@@ -17,7 +24,7 @@ cve_data = {
17
  'Published Date': ['2023-01-01', '2023-01-02', '2023-01-03', '2023-01-04', '2023-01-05']
18
  }
19
 
20
- # Convert the data to a DataFrame
21
  cve_df = pd.DataFrame(cve_data)
22
 
23
  # Function to filter CVEs by severity
@@ -53,7 +60,6 @@ with gr.Blocks() as demo:
53
  # CVE Chart
54
  with gr.Row():
55
  cve_chart = gr.Plot(label='CVEs by Severity')
56
- # Use update instead of plot
57
  cve_chart.update(generate_cve_chart())
58
 
59
  # Sentiment Analysis
@@ -65,5 +71,16 @@ with gr.Blocks() as demo:
65
  # Event listener for sentiment analysis
66
  analyze_btn.click(fn=analyze_sentiment, inputs=description_input, outputs=sentiment_output)
67
 
 
 
 
 
 
 
 
 
 
 
 
68
  # Launch the app
69
- demo.launch(share=True)
 
2
  import pandas as pd
3
  import plotly.express as px
4
  from transformers import pipeline
5
+ from datasets import load_dataset
6
 
7
+ # Load the additional datasets
8
+ deepseek_prover_v1 = load_dataset('deepseek-ai/DeepSeek-Prover-V1', split='train')
9
+ cybersecurity_kg = load_dataset('CyberPeace-Institute/Cybersecurity-Knowledge-Graph', split='train')
10
+ codesearchnet_pep8 = load_dataset('kejian/codesearchnet-python-pep8-v1', split='train')
11
+ code_text_python = load_dataset('semeru/code-text-python', split='train')
12
+
13
+ # Sample CVE data (for visualization)
14
  cve_data = {
15
  'CVE ID': ['CVE-2023-0001', 'CVE-2023-0002', 'CVE-2023-0003', 'CVE-2023-0004', 'CVE-2023-0005'],
16
  'Severity': ['High', 'Medium', 'Low', 'High', 'Medium'],
 
24
  'Published Date': ['2023-01-01', '2023-01-02', '2023-01-03', '2023-01-04', '2023-01-05']
25
  }
26
 
27
+ # Convert CVE data to a DataFrame
28
  cve_df = pd.DataFrame(cve_data)
29
 
30
  # Function to filter CVEs by severity
 
60
  # CVE Chart
61
  with gr.Row():
62
  cve_chart = gr.Plot(label='CVEs by Severity')
 
63
  cve_chart.update(generate_cve_chart())
64
 
65
  # Sentiment Analysis
 
71
  # Event listener for sentiment analysis
72
  analyze_btn.click(fn=analyze_sentiment, inputs=description_input, outputs=sentiment_output)
73
 
74
+ # Display additional datasets in the dashboard
75
+ with gr.Tab("Datasets Overview"):
76
+ gr.Markdown("## Overview of Additional Datasets")
77
+
78
+ # Display datasets as dataframes
79
+ with gr.Row():
80
+ gr.Dataframe(label="DeepSeek-Prover-V1", value=deepseek_prover_v1)
81
+ gr.Dataframe(label="Cybersecurity Knowledge Graph", value=cybersecurity_kg)
82
+ gr.Dataframe(label="Code SearchNet Python PEP8", value=codesearchnet_pep8)
83
+ gr.Dataframe(label="Code Text Python", value=code_text_python)
84
+
85
  # Launch the app
86
+ demo.launch(share=True)