Canstralian commited on
Commit
ba1d68e
·
verified ·
1 Parent(s): c946e64

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +40 -0
app.py CHANGED
@@ -1,8 +1,48 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  # Function to generate a bar chart of CVEs by severity
2
  def generate_cve_chart():
3
  fig = px.bar(cve_df, x='Severity', y='CVE ID', color='Severity', title='CVEs by Severity')
4
  return fig
5
 
 
 
 
 
 
 
6
  # Create the Gradio app
7
  with gr.Blocks() as demo:
8
  # Title and description
 
1
+ import gradio as gr # Ensure Gradio is correctly imported
2
+ import pandas as pd
3
+ import plotly.express as px
4
+ from transformers import pipeline
5
+ from datasets import load_dataset
6
+
7
+ # Load the additional datasets
8
+ deepseek_prover_v1 = load_dataset('deepseek-ai/DeepSeek-Prover-V1', split='train')
9
+ cybersecurity_kg = load_dataset('CyberPeace-Institute/Cybersecurity-Knowledge-Graph', split='train')
10
+ codesearchnet_pep8 = load_dataset('kejian/codesearchnet-python-pep8-v1', split='train')
11
+ code_text_python = load_dataset('semeru/code-text-python', split='train')
12
+
13
+ # Sample CVE data (for visualization)
14
+ cve_data = {
15
+ 'CVE ID': ['CVE-2023-0001', 'CVE-2023-0002', 'CVE-2023-0003', 'CVE-2023-0004', 'CVE-2023-0005'],
16
+ 'Severity': ['High', 'Medium', 'Low', 'High', 'Medium'],
17
+ 'Description': [
18
+ 'A critical vulnerability in the web application framework.',
19
+ 'A medium-severity vulnerability in the database management system.',
20
+ 'A low-severity vulnerability in the network firewall.',
21
+ 'A critical vulnerability in the operating system kernel.',
22
+ 'A medium-severity vulnerability in the web server.'
23
+ ],
24
+ 'Published Date': ['2023-01-01', '2023-01-02', '2023-01-03', '2023-01-04', '2023-01-05']
25
+ }
26
+
27
+ # Convert CVE data to a DataFrame
28
+ cve_df = pd.DataFrame(cve_data)
29
+
30
+ # Function to filter CVEs by severity
31
+ def filter_cves(severity):
32
+ filtered_df = cve_df[cve_df['Severity'] == severity]
33
+ return filtered_df
34
+
35
  # Function to generate a bar chart of CVEs by severity
36
  def generate_cve_chart():
37
  fig = px.bar(cve_df, x='Severity', y='CVE ID', color='Severity', title='CVEs by Severity')
38
  return fig
39
 
40
+ # Function to analyze the sentiment of a CVE description
41
+ def analyze_sentiment(description):
42
+ sentiment_pipeline = pipeline('sentiment-analysis')
43
+ result = sentiment_pipeline(description)
44
+ return result
45
+
46
  # Create the Gradio app
47
  with gr.Blocks() as demo:
48
  # Title and description