library_name: transformers | |
license: apache-2.0 | |
datasets: | |
- HuggingFaceM4/the_cauldron | |
- HuggingFaceM4/Docmatix | |
- lmms-lab/LLaVA-OneVision-Data | |
- lmms-lab/M4-Instruct-Data | |
- HuggingFaceFV/finevideo | |
- MAmmoTH-VL/MAmmoTH-VL-Instruct-12M | |
- lmms-lab/LLaVA-Video-178K | |
- orrzohar/Video-STaR | |
- Mutonix/Vript | |
- TIGER-Lab/VISTA-400K | |
- Enxin/MovieChat-1K_train | |
- ShareGPT4Video/ShareGPT4Video | |
pipeline_tag: video-text-to-text | |
language: | |
- en | |
base_model: | |
- HuggingFaceTB/SmolVLM-Instruct | |
tags: | |
- mlx | |
# smdesai/SmolVLM2-2.2B-Instruct-4bit | |
This model was converted to MLX format from [`HuggingFaceTB/SmolVLM2-2.2B-Instruct`]() using mlx-vlm version **0.1.14**. | |
Refer to the [original model card](https://huggingface.co/HuggingFaceTB/SmolVLM2-2.2B-Instruct) for more details on the model. | |
## Use with mlx | |
```bash | |
pip install -U mlx-vlm | |
``` | |
```bash | |
python -m mlx_vlm.generate --model smdesai/SmolVLM2-2.2B-Instruct-4bit --max-tokens 100 --temp 0.0 --prompt "Describe this image." --image <path_to_image> | |
``` | |