Another Error

#5
by Gemneye - opened

I tried upgrading torch, torchvision, and torchaudio to see if it made a difference. Now getting a new error. I also downloaded distilled models in case I could not run with the 24B model.

(magi) root@46e1abf287b8:/workspace/MAGI-1# bash example/24B/run.sh
/workspace/miniconda3/envs/magi/lib/python3.10/site-packages/timm/models/layers/init.py:48: FutureWarning: Importing from timm.models.layers is deprecated, please import via timm.layers
warnings.warn(f"Importing from {name} is deprecated, please import via timm.layers", FutureWarning)
[rank0]: Traceback (most recent call last):
[rank0]: File "/workspace/MAGI-1/inference/pipeline/entry.py", line 54, in
[rank0]: main()
[rank0]: File "/workspace/MAGI-1/inference/pipeline/entry.py", line 37, in main
[rank0]: pipeline = MagiPipeline(args.config_file)
[rank0]: File "/workspace/MAGI-1/inference/pipeline/pipeline.py", line 32, in init
[rank0]: dist_init(self.config)
[rank0]: File "/workspace/MAGI-1/inference/infra/distributed/dist_utils.py", line 48, in dist_init
[rank0]: assert config.engine_config.cp_size * config.engine_config.pp_size == torch.distributed.get_world_size()
[rank0]: AssertionError
[rank0]:[W423 02:54:17.933492678 ProcessGroupNCCL.cpp:1496] Warning: WARNING: destroy_process_group() was not called before program exit, which can leak resources. For more info, please see https://pytorch.org/docs/stable/distributed.html#shutdown (function operator())
E0423 02:54:19.241000 5094 site-packages/torch/distributed/elastic/multiprocessing/api.py:869] failed (exitcode: 1) local_rank: 0 (pid: 5163) of binary: /workspace/miniconda3/envs/magi/bin/python
Traceback (most recent call last):
File "/workspace/miniconda3/envs/magi/bin/torchrun", line 8, in
sys.exit(main())
File "/workspace/miniconda3/envs/magi/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/errors/init.py", line 355, in wrapper
return f(*args, **kwargs)
File "/workspace/miniconda3/envs/magi/lib/python3.10/site-packages/torch/distributed/run.py", line 918, in main
run(args)
File "/workspace/miniconda3/envs/magi/lib/python3.10/site-packages/torch/distributed/run.py", line 909, in run
elastic_launch(
File "/workspace/miniconda3/envs/magi/lib/python3.10/site-packages/torch/distributed/launcher/api.py", line 138, in call
return launch_agent(self._config, self._entrypoint, list(args))
File "/workspace/miniconda3/envs/magi/lib/python3.10/site-packages/torch/distributed/launcher/api.py", line 269, in launch_agent
raise ChildFailedError(
torch.distributed.elastic.multiprocessing.errors.ChildFailedError:

inference/pipeline/entry.py FAILED

Failures:

Root Cause (first observed failure):
[0]:
time : 2025-04-23_02:54:19
host : 46e1abf287b8
rank : 0 (local_rank: 0)
exitcode : 1 (pid: 5163)
error_file: <N/A>
traceback : To enable traceback see: https://pytorch.org/docs/stable/elastic/errors.html

Sand AI org

It looks like the config needs some modifications. Could you let me know how many GPUs you’re using and what type they are?
Also, make sure that pp_size * cp_size equals the total number of GPUs.

I started all over from scratch. I am getting further but still having problems.

[2025-04-24 01:04:51,105 - INFO] After build_dit_model, memory allocated: 0.02 GB, memory reserved: 0.08 GB
[rank0]: Traceback (most recent call last):
[rank0]: File "/workspace/MAGI-1/inference/pipeline/entry.py", line 54, in
[rank0]: main()
[rank0]: File "/workspace/MAGI-1/inference/pipeline/entry.py", line 45, in main
[rank0]: pipeline.run_image_to_video(prompt=args.prompt, image_path=args.image_path, output_path=args.output_path)
[rank0]: File "/workspace/MAGI-1/inference/pipeline/pipeline.py", line 40, in run_image_to_video
[rank0]: self._run(prompt, prefix_video, output_path)
[rank0]: File "/workspace/MAGI-1/inference/pipeline/pipeline.py", line 48, in _run
[rank0]: dit = get_dit(self.config)
[rank0]: File "/workspace/MAGI-1/inference/model/dit/dit_model.py", line 654, in get_dit
[rank0]: model = load_checkpoint(model)
[rank0]: File "/workspace/MAGI-1/inference/infra/checkpoint/checkpointing.py", line 155, in load_checkpoint
[rank0]: state_dict = load_state_dict(model.runtime_config, model.engine_config)
[rank0]: File "/workspace/MAGI-1/inference/infra/checkpoint/checkpointing.py", line 145, in load_state_dict
[rank0]: assert os.path.exists(inference_weight_dir)
[rank0]: AssertionError
E0424 01:04:52.556000 132482488543040 torch/distributed/elastic/multiprocessing/api.py:833] failed (exitcode: 1) local_rank: 0 (pid: 3378) of binary: /workspace/miniconda3/envs/magi/bin/python
Traceback (most recent call last):
File "/workspace/miniconda3/envs/magi/bin/torchrun", line 33, in
sys.exit(load_entry_point('torch==2.4.0', 'console_scripts', 'torchrun')())
File "/workspace/miniconda3/envs/magi/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/errors/init.py", line 348, in wrapper
return f(*args, **kwargs)
File "/workspace/miniconda3/envs/magi/lib/python3.10/site-packages/torch/distributed/run.py", line 901, in main
run(args)
File "/workspace/miniconda3/envs/magi/lib/python3.10/site-packages/torch/distributed/run.py", line 892, in run
elastic_launch(
File "/workspace/miniconda3/envs/magi/lib/python3.10/site-packages/torch/distributed/launcher/api.py", line 133, in call
return launch_agent(self._config, self._entrypoint, list(args))
File "/workspace/miniconda3/envs/magi/lib/python3.10/site-packages/torch/distributed/launcher/api.py", line 264, in launch_agent
raise ChildFailedError(
torch.distributed.elastic.multiprocessing.errors.ChildFailedError:

This is from the 24B_config.json file

55 "clean_chunk_kvrange": 1,
56 "clean_t": 0.9999,
57 "seed": 83746,
58 "num_frames": 121,
59 "video_size_h": 540,
60 "video_size_w": 960,
61 "num_steps": 8,
62 "window_size": 4,
63 "fps": 24,
64 "chunk_width": 6,
65 "load": "/workspace/MAGI-1-models/models/MAGI/ckpt/magi/24B_base/inference_weight",
66 "t5_pretrained": "/workspace/MAGI-1-models/models/T5/ckpt/t5",
67 "t5_device": "cuda",
68 "vae_pretrained": "/workspace/MAGI-1-models/models/VAE",
69 "scale_factor": 0.18215,
70 "temporal_downsample_factor": 4

I have no idea what is going on, but the files in the directory configured by the "load" parameter are the same as those on huggingface. I am not sure about this error: " assert os.path.exists(inference_weight_dir)" . I tried changing directories to one level back, bad that did not make a difference. I tried this with both a single L40 and with 2xL40s. I am not sure if that is too low of specs for this or not. I will try one of the other configurations with the other models, but I certainly cannot get this to work.

I used cpp_size = 2 when I was using 2xL40s and cpp_size=1 when using 1xL40.

Sand AI org

Change the load path to load": "/workspace/MAGI-1-models/models/MAGI/ckpt/magi/24B_base

Same Problem:

(magi) root@ca1683f2b34d:/workspace# ls -l /workspace/MAGI-1-models/models/MAGI/ckpt/magi/24B_base/inference_weight
total 46757232
-rw-rw-rw- 1 root root  4988160184 Apr 23 21:18 model-00001-of-00006.safetensors
-rw-rw-rw- 1 root root  7247764000 Apr 23 21:18 model-00002-of-00006.safetensors
-rw-rw-rw- 1 root root 19327358992 Apr 23 21:19 model-00003-of-00006.safetensors
-rw-rw-rw- 1 root root  9663682528 Apr 23 21:18 model-00004-of-00006.safetensors
-rw-rw-rw- 1 root root  3623890200 Apr 23 21:18 model-00005-of-00006.safetensors
-rw-rw-rw- 1 root root  3028420248 Apr 23 21:18 model-00006-of-00006.safetensors
-rw-rw-rw- 1 root root      126708 Apr 23 21:17 model.safetensors.index.json
(magi) root@ca1683f2b34d:/workspace#
(magi) root@ca1683f2b34d:/workspace/MAGI-1# cat example/24B/24B_config.json 
{
    "model_config": {
        "model_name": "videodit_ardf",
        "num_layers": 48,
        "hidden_size": 6144,
        "ffn_hidden_size": 16384,
        "num_attention_heads": 48,
        "num_query_groups": 8,
        "kv_channels": 128,
        "layernorm_epsilon": 1e-06,
        "apply_layernorm_1p": true,
        "x_rescale_factor": 0.1,
        "half_channel_vae": true,
        "params_dtype": "torch.bfloat16",
        "patch_size": 2,
        "t_patch_size": 1,
        "in_channels": 32,
        "out_channels": 32,
        "cond_hidden_ratio": 0.25,
        "caption_channels": 4096,
        "caption_max_length": 800,
        "xattn_cond_hidden_ratio": 1.0,
        "cond_gating_ratio": 1.0,
        "gated_linear_unit": true
    },
    "runtime_config": {
        "cfg_number": 1,
        "cfg_t_range": [
            0.0,
            0.0217,
            0.1,
            0.3,
            0.999
        ],
        "prev_chunk_scales": [
            1.5,
            1.5,
            1.5,
            1.0,
            1.0
        ],
        "text_scales": [
            7.5,
            7.5,
            7.5,
            0.0,
            0.0
        ],
        "noise2clean_kvrange": [
            5,
            4,
            3,
            2
        ],
        "clean_chunk_kvrange": 1,
        "clean_t": 0.9999,
        "seed": 83746,
        "num_frames": 121,
        "video_size_h": 540,
        "video_size_w": 960,
        "num_steps": 8,
        "window_size": 4,
        "fps": 24,
        "chunk_width": 6,
        "load": "/workspace/MAGI-1-models/models/MAGI/ckpt/magi/24B_base",
        "t5_pretrained": "/workspace/MAGI-1-models/models/T5/ckpt/t5",
        "t5_device": "cuda",
        "vae_pretrained": "/workspace/MAGI-1-models/models/VAE",
        "scale_factor": 0.18215,
        "temporal_downsample_factor": 4
    },
    "engine_config": {
        "distributed_backend": "nccl",
        "distributed_timeout_minutes": 15,
        "pp_size": 1,
        "cp_size": 1,
        "cp_strategy": "cp_ulysses",
        "ulysses_overlap_degree": 1,
        "fp8_quant": true,
        "distill_nearly_clean_chunk_threshold": 0.3,
        "shortcut_mode": "8,16,16",
        "distill": true,
        "kv_offload": true,
        "enable_cuda_graph": false
    }
}
/workspace/miniconda3/envs/magi/lib/python3.10/site-packages/timm/models/layers/__init__.py:48: FutureWarning: Importing from timm.models.layers is deprecated, please import via timm.layers
  warnings.warn(f"Importing from {__name__} is deprecated, please import via timm.layers", FutureWarning)
[W425 00:54:29.094511239 CUDAAllocatorConfig.h:28] Warning: expandable_segments not supported on this platform (function operator())
[2025-04-25 00:54:29,391 - INFO] Initialize torch distribution and model parallel successfully
[2025-04-25 00:54:29,391 - INFO] MagiConfig(model_config=ModelConfig(model_name='videodit_ardf', num_layers=48, hidden_size=6144, ffn_hidden_size=16384, num_attention_heads=48, num_query_groups=8, kv_channels=128, layernorm_epsilon=1e-06, apply_layernorm_1p=True, x_rescale_factor=0.1, half_channel_vae=True, params_dtype=torch.bfloat16, patch_size=2, t_patch_size=1, in_channels=32, out_channels=32, cond_hidden_ratio=0.25, caption_channels=4096, caption_max_length=800, xattn_cond_hidden_ratio=1.0, cond_gating_ratio=1.0, gated_linear_unit=True), runtime_config=RuntimeConfig(cfg_number=1, cfg_t_range=[0.0, 0.0217, 0.1, 0.3, 0.999], prev_chunk_scales=[1.5, 1.5, 1.5, 1.0, 1.0], text_scales=[7.5, 7.5, 7.5, 0.0, 0.0], noise2clean_kvrange=[5, 4, 3, 2], clean_chunk_kvrange=1, clean_t=0.9999, seed=83746, num_frames=121, video_size_h=540, video_size_w=960, num_steps=8, window_size=4, fps=24, chunk_width=6, t5_pretrained='/workspace/MAGI-1-models/models/T5/ckpt/t5', t5_device='cuda', vae_pretrained='/workspace/MAGI-1-models/models/VAE', scale_factor=0.18215, temporal_downsample_factor=4, load='/workspace/MAGI-1-models/models/MAGI/ckpt/magi/24B_base'), engine_config=EngineConfig(distributed_backend='nccl', distributed_timeout_minutes=15, pp_size=1, cp_size=1, cp_strategy='cp_ulysses', ulysses_overlap_degree=1, fp8_quant=True, distill_nearly_clean_chunk_threshold=0.3, shortcut_mode='8,16,16', distill=True, kv_offload=True, enable_cuda_graph=False))
/workspace/MAGI-1/inference/pipeline/video_process.py:229: UserWarning: The given buffer is not writable, and PyTorch does not support non-writable tensors. This means you can write to the underlying (supposedly non-writable) buffer using the tensor. You may want to copy the buffer to protect its data or make it writable before converting it to a tensor. This type of warning will be suppressed for the rest of this program. (Triggered internally at /opt/conda/conda-bld/pytorch_1720538438429/work/torch/csrc/utils/tensor_new.cpp:1544.)
  video = torch.frombuffer(out, dtype=torch.uint8).view(1, h, w, 3)
[2025-04-25 00:54:46,251 - INFO] Precompute validation prompt embeddings
You are using the default legacy behaviour of the <class 'transformers.models.t5.tokenization_t5.T5Tokenizer'>. This is expected, and simply means that the `legacy` (previous) behavior will be used so nothing changes for you. If you want to use the new behaviour, set `legacy=False`. This should only be set if you understand what it means, and thoroughly read the reason why this was added as explained in https://github.com/huggingface/transformers/pull/24565
Loading checkpoint shards: 100%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 2/2 [01:00<00:00, 30.09s/it]
[2025-04-25 00:55:49,201 - INFO] VideoDiTModel(
  (x_embedder): Conv3d(32, 6144, kernel_size=(1, 2, 2), stride=(1, 2, 2), bias=False)
  (t_embedder): TimestepEmbedder(
    (mlp): Sequential(
      (0): Linear(in_features=256, out_features=1536, bias=True)
      (1): SiLU()
      (2): Linear(in_features=1536, out_features=1536, bias=True)
    )
  )
  (y_embedder): CaptionEmbedder(
    (y_proj_xattn): Sequential(
      (0): Linear(in_features=4096, out_features=6144, bias=True)
      (1): SiLU()
    )
    (y_proj_adaln): Sequential(
      (0): Linear(in_features=4096, out_features=1536, bias=True)
    )
  )
  (rope): LearnableRotaryEmbeddingCat()
  (videodit_blocks): TransformerBlock(
    (layers): ModuleList(
      (0): TransformerLayer(
        (ada_modulate_layer): AdaModulateLayer(
          (act): SiLU()
          (proj): Sequential(
            (0): Linear(in_features=1536, out_features=12288, bias=True)
          )
        )
        (self_attention): FullyParallelAttention(
          (linear_qkv): CustomLayerNormLinear(
            (layer_norm): LayerNorm((6144,), eps=1e-06, elementwise_affine=True)
            (q): Linear(in_features=6144, out_features=6144, bias=False)
            (qx): Linear(in_features=6144, out_features=6144, bias=False)
            (k): Linear(in_features=6144, out_features=1024, bias=False)
            (v): Linear(in_features=6144, out_features=1024, bias=False)
          )
          (linear_kv_xattn): Linear(in_features=6144, out_features=2048, bias=False)
          (linear_proj): Linear(in_features=12288, out_features=6144, bias=False)
          (q_layernorm): FusedLayerNorm()
          (q_layernorm_xattn): FusedLayerNorm()
          (k_layernorm): FusedLayerNorm()
          (k_layernorm_xattn): FusedLayerNorm()
        )
        (self_attn_post_norm): FusedLayerNorm()
        (mlp): CustomMLP(
          (layer_norm): LayerNorm((6144,), eps=1e-06, elementwise_affine=True)
          (linear_fc1): Linear(in_features=6144, out_features=32768, bias=False)
          (linear_fc2): Linear(in_features=16384, out_features=6144, bias=False)
        )
        (mlp_post_norm): FusedLayerNorm()
      )
      (1-46): 46 x TransformerLayer(
        (ada_modulate_layer): AdaModulateLayer(
          (act): SiLU()
          (proj): Sequential(
            (0): Linear(in_features=1536, out_features=12288, bias=True)
          )
        )
        (self_attention): FullyParallelAttention(
          (linear_qkv): CustomLayerNormLinear(
            (layer_norm): LayerNorm((6144,), eps=1e-06, elementwise_affine=True)
            (q): PerTensorQuantizedFp8Linear()
            (qx): PerTensorQuantizedFp8Linear()
            (k): PerTensorQuantizedFp8Linear()
            (v): PerTensorQuantizedFp8Linear()
          )
          (linear_kv_xattn): Linear(in_features=6144, out_features=2048, bias=False)
          (linear_proj): PerChannelQuantizedFp8Linear()
          (q_layernorm): FusedLayerNorm()
          (q_layernorm_xattn): FusedLayerNorm()
          (k_layernorm): FusedLayerNorm()
          (k_layernorm_xattn): FusedLayerNorm()
        )
        (self_attn_post_norm): FusedLayerNorm()
        (mlp): CustomMLP(
          (layer_norm): LayerNorm((6144,), eps=1e-06, elementwise_affine=True)
          (linear_fc1): PerTensorQuantizedFp8Linear()
          (linear_fc2): PerChannelQuantizedFp8Linear()
        )
        (mlp_post_norm): FusedLayerNorm()
      )
      (47): TransformerLayer(
        (ada_modulate_layer): AdaModulateLayer(
          (act): SiLU()
          (proj): Sequential(
            (0): Linear(in_features=1536, out_features=12288, bias=True)
          )
        )
        (self_attention): FullyParallelAttention(
          (linear_qkv): CustomLayerNormLinear(
            (layer_norm): LayerNorm((6144,), eps=1e-06, elementwise_affine=True)
            (q): Linear(in_features=6144, out_features=6144, bias=False)
            (qx): Linear(in_features=6144, out_features=6144, bias=False)
            (k): Linear(in_features=6144, out_features=1024, bias=False)
            (v): Linear(in_features=6144, out_features=1024, bias=False)
          )
          (linear_kv_xattn): Linear(in_features=6144, out_features=2048, bias=False)
          (linear_proj): Linear(in_features=12288, out_features=6144, bias=False)
          (q_layernorm): FusedLayerNorm()
          (q_layernorm_xattn): FusedLayerNorm()
          (k_layernorm): FusedLayerNorm()
          (k_layernorm_xattn): FusedLayerNorm()
        )
        (self_attn_post_norm): FusedLayerNorm()
        (mlp): CustomMLP(
          (layer_norm): LayerNorm((6144,), eps=1e-06, elementwise_affine=True)
          (linear_fc1): Linear(in_features=6144, out_features=32768, bias=False)
          (linear_fc2): Linear(in_features=16384, out_features=6144, bias=False)
        )
        (mlp_post_norm): FusedLayerNorm()
      )
    )
    (final_layernorm): FusedLayerNorm()
  )
  (final_linear): FinalLinear(
    (linear): Linear(in_features=6144, out_features=128, bias=False)
  )
)
[2025-04-25 00:55:49,212 - INFO] (cp, pp) rank (0, 0): param count 23902014382, model size 24.65 GB
[2025-04-25 00:55:49,212 - INFO] Build DiTModel successfully
[2025-04-25 00:55:49,212 - INFO] After build_dit_model, memory allocated: 0.02 GB, memory reserved: 0.08 GB
[rank0]: Traceback (most recent call last):
[rank0]:   File "/workspace/MAGI-1/inference/pipeline/entry.py", line 54, in <module>
[rank0]:     main()
[rank0]:   File "/workspace/MAGI-1/inference/pipeline/entry.py", line 45, in main
[rank0]:     pipeline.run_image_to_video(prompt=args.prompt, image_path=args.image_path, output_path=args.output_path)
[rank0]:   File "/workspace/MAGI-1/inference/pipeline/pipeline.py", line 40, in run_image_to_video
[rank0]:     self._run(prompt, prefix_video, output_path)
[rank0]:   File "/workspace/MAGI-1/inference/pipeline/pipeline.py", line 48, in _run
[rank0]:     dit = get_dit(self.config)
[rank0]:   File "/workspace/MAGI-1/inference/model/dit/dit_model.py", line 654, in get_dit
[rank0]:     model = load_checkpoint(model)
[rank0]:   File "/workspace/MAGI-1/inference/infra/checkpoint/checkpointing.py", line 155, in load_checkpoint
[rank0]:     state_dict = load_state_dict(model.runtime_config, model.engine_config)
[rank0]:   File "/workspace/MAGI-1/inference/infra/checkpoint/checkpointing.py", line 145, in load_state_dict
[rank0]:     assert os.path.exists(inference_weight_dir)
[rank0]: AssertionError
E0425 00:55:50.917000 136965425092416 torch/distributed/elastic/multiprocessing/api.py:833] failed (exitcode: 1) local_rank: 0 (pid: 3142) of binary: /workspace/miniconda3/envs/magi/bin/python
Traceback (most recent call last):
  File "/workspace/miniconda3/envs/magi/bin/torchrun", line 33, in <module>
    sys.exit(load_entry_point('torch==2.4.0', 'console_scripts', 'torchrun')())
  File "/workspace/miniconda3/envs/magi/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/errors/__init__.py", line 348, in wrapper
    return f(*args, **kwargs)
  File "/workspace/miniconda3/envs/magi/lib/python3.10/site-packages/torch/distributed/run.py", line 901, in main
    run(args)
  File "/workspace/miniconda3/envs/magi/lib/python3.10/site-packages/torch/distributed/run.py", line 892, in run
    elastic_launch(
  File "/workspace/miniconda3/envs/magi/lib/python3.10/site-packages/torch/distributed/launcher/api.py", line 133, in __call__
    return launch_agent(self._config, self._entrypoint, list(args))
  File "/workspace/miniconda3/envs/magi/lib/python3.10/site-packages/torch/distributed/launcher/api.py", line 264, in launch_agent
    raise ChildFailedError(
torch.distributed.elastic.multiprocessing.errors.ChildFailedError: 
============================================================
inference/pipeline/entry.py FAILED
------------------------------------------------------------
Failures:
  <NO_OTHER_FAILURES>
------------------------------------------------------------
Root Cause (first observed failure):
[0]:
  time      : 2025-04-25_00:55:50
  host      : ca1683f2b34d
  rank      : 0 (local_rank: 0)
  exitcode  : 1 (pid: 3142)
  error_file: <N/A>
  traceback : To enable traceback see: https://pytorch.org/docs/stable/elastic/errors.html
============================================================
(magi) root@ca1683f2b34d:/workspace/MAGI-1# 
Sand AI org

If you’re using the 24B_base model, please set cfg_number=3, fp8_quant=false, and distill=false.
The default config on GitHub seems a bit confusing — I’ll try to update it when I get a chance.

Well, it got further, but still a no go. I tried it with 4xL40s.

[2025-04-26 04:56:46,189 - INFO] After load_checkpoint, memory allocated: 11.28 GB, memory reserved: 11.31 GB
[2025-04-26 04:56:46,191 - INFO] After high_precision_promoter, memory allocated: 11.28 GB, memory reserved: 11.31 GB
[2025-04-26 04:56:46,350 - INFO] Load checkpoint successfully
[2025-04-26 04:56:46,350 - INFO] special_token = ['HQ_TOKEN', 'DURATION_TOKEN']
[2025-04-26 04:56:46,354 - INFO] Warning: For better performance, please use multiple inputs for PP>1
InferBatch 0:   0%|                                                                                                                                                                                                                                                                       | 0/6 [00:00<?, ?it/s][2025-04-26 04:56:46,355 - INFO] transport_inputs len: 1
2025-04-26 04:56:51,307 - INFO - flashinfer.jit: Loading JIT ops: silu_and_mul
2025-04-26 04:57:12,262 - INFO - flashinfer.jit: Finished loading JIT ops: silu_and_mul
[rank0]: Traceback (most recent call last):
[rank0]:   File "/workspace/MAGI-1/inference/pipeline/entry.py", line 54, in <module>
[rank0]:     main()
[rank0]:   File "/workspace/MAGI-1/inference/pipeline/entry.py", line 45, in main
[rank0]:     pipeline.run_image_to_video(prompt=args.prompt, image_path=args.image_path, output_path=args.output_path)
[rank0]:   File "/workspace/MAGI-1/inference/pipeline/pipeline.py", line 40, in run_image_to_video
[rank0]:     self._run(prompt, prefix_video, output_path)
[rank0]:   File "/workspace/MAGI-1/inference/pipeline/pipeline.py", line 50, in _run
[rank0]:     [
[rank0]:   File "/workspace/MAGI-1/inference/pipeline/pipeline.py", line 50, in <listcomp>
[rank0]:     [
[rank0]:   File "/workspace/MAGI-1/inference/pipeline/video_generate.py", line 763, in generate_per_chunk
[rank0]:     for _, _, chunk in sample_transport.walk():
[rank0]:   File "/workspace/MAGI-1/inference/pipeline/video_generate.py", line 725, in walk
[rank0]:     velocity = self.forward_velocity(infer_idx, 0)
[rank0]:   File "/workspace/MAGI-1/inference/pipeline/video_generate.py", line 657, in forward_velocity
[rank0]:     velocity = forward_fn(
[rank0]:   File "/workspace/MAGI-1/inference/model/dit/dit_model.py", line 503, in forward_dispatcher
[rank0]:     (out_cond_pre_and_text, out_cond_pre, out_uncond, denoise_width) = self.forward_3cfg(
[rank0]:   File "/workspace/MAGI-1/inference/model/dit/dit_model.py", line 414, in forward_3cfg
[rank0]:     out_cond_pre_and_text = self.forward(
[rank0]:   File "/workspace/miniconda3/envs/magi/lib/python3.10/site-packages/torch/utils/_contextlib.py", line 116, in decorate_context
[rank0]:     return func(*args, **kwargs)
[rank0]:   File "/workspace/MAGI-1/inference/model/dit/dit_model.py", line 385, in forward
[rank0]:     x = self.videodit_blocks.forward(
[rank0]:   File "/workspace/miniconda3/envs/magi/lib/python3.10/site-packages/torch/utils/_contextlib.py", line 116, in decorate_context
[rank0]:     return func(*args, **kwargs)
[rank0]:   File "/workspace/MAGI-1/inference/model/dit/dit_module.py", line 1422, in forward
[rank0]:     hidden_states = layer(
[rank0]:   File "/workspace/miniconda3/envs/magi/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1553, in _wrapped_call_impl
[rank0]:     return self._call_impl(*args, **kwargs)
[rank0]:   File "/workspace/miniconda3/envs/magi/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1562, in _call_impl
[rank0]:     return forward_call(*args, **kwargs)
[rank0]:   File "/workspace/MAGI-1/inference/model/dit/dit_module.py", line 1311, in forward
[rank0]:     hidden_states = self.attn_post_process(core_attn_out, cross_attn_out, residual, condition, condition_map)
[rank0]:   File "/workspace/MAGI-1/inference/model/dit/dit_module.py", line 1324, in attn_post_process
[rank0]:     hidden_states = self.gating_and_mlp(hidden_states, residual, condition, condition_map)
[rank0]:   File "/workspace/MAGI-1/inference/model/dit/dit_module.py", line 1359, in gating_and_mlp
[rank0]:     hidden_states = bias_modulate_add(hidden_states, residual, condition_map, gate_mlp, self.mlp_post_norm).to(
[rank0]:   File "/workspace/MAGI-1/inference/model/dit/dit_module.py", line 293, in bias_modulate_add
[rank0]:     x = x.float()
[rank0]: RuntimeError: CUDA error: no kernel image is available for execution on the device
[rank0]: CUDA kernel errors might be asynchronously reported at some other API call, so the stacktrace below might be incorrect.
[rank0]: For debugging consider passing CUDA_LAUNCH_BLOCKING=1
[rank0]: Compile with `TORCH_USE_CUDA_DSA` to enable device-side assertions.

InferBatch 0:   0%|                                                                                                                                                                                                                                                                       | 0/6 [00:26<?, ?it/s]
[rank3]: Traceback (most recent call last):
[rank3]:   File "/workspace/MAGI-1/inference/pipeline/entry.py", line 54, in <module>
[rank3]:     main()
[rank3]:   File "/workspace/MAGI-1/inference/pipeline/entry.py", line 45, in main
[rank3]:     pipeline.run_image_to_video(prompt=args.prompt, image_path=args.image_path, output_path=args.output_path)
[rank3]:   File "/workspace/MAGI-1/inference/pipeline/pipeline.py", line 40, in run_image_to_video
[rank3]:     self._run(prompt, prefix_video, output_path)
[rank3]:   File "/workspace/MAGI-1/inference/pipeline/pipeline.py", line 50, in _run
[rank3]:     [
[rank3]:   File "/workspace/MAGI-1/inference/pipeline/pipeline.py", line 50, in <listcomp>
[rank3]:     [
[rank3]:   File "/workspace/MAGI-1/inference/pipeline/video_generate.py", line 763, in generate_per_chunk
[rank3]:     for _, _, chunk in sample_transport.walk():
[rank3]:   File "/workspace/MAGI-1/inference/pipeline/video_generate.py", line 725, in walk
[rank3]:     velocity = self.forward_velocity(infer_idx, 0)
[rank3]:   File "/workspace/MAGI-1/inference/pipeline/video_generate.py", line 657, in forward_velocity
[rank3]:     velocity = forward_fn(
[rank3]:   File "/workspace/MAGI-1/inference/model/dit/dit_model.py", line 503, in forward_dispatcher
[rank3]:     (out_cond_pre_and_text, out_cond_pre, out_uncond, denoise_width) = self.forward_3cfg(
[rank3]:   File "/workspace/MAGI-1/inference/model/dit/dit_model.py", line 414, in forward_3cfg
[rank3]:     out_cond_pre_and_text = self.forward(
[rank3]:   File "/workspace/miniconda3/envs/magi/lib/python3.10/site-packages/torch/utils/_contextlib.py", line 116, in decorate_context
[rank3]:     return func(*args, **kwargs)
[rank3]:   File "/workspace/MAGI-1/inference/model/dit/dit_model.py", line 379, in forward
[rank3]:     x = pp_scheduler().recv_prev_data(x.shape, x.dtype)
[rank3]:   File "/workspace/MAGI-1/inference/infra/parallelism/pipeline_parallel.py", line 74, in recv_prev_data
[rank3]:     self.irecv_prev(recv_tensor).wait()
[rank3]:   File "/workspace/MAGI-1/inference/infra/parallelism/pipeline_parallel.py", line 60, in irecv_prev
[rank3]:     handle = torch.distributed.irecv(buffer, src=mpu.get_pipeline_model_parallel_prev_rank(), group=mpu.get_pp_group())
[rank3]:   File "/workspace/miniconda3/envs/magi/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py", line 1914, in irecv
[rank3]:     return pg.recv([tensor], group_src_rank, tag)
[rank3]: torch.distributed.DistBackendError: [3] is setting up NCCL communicator and retrieving ncclUniqueId from [0] via c10d key-value store by key '2:3', but store->get('2:3') got error: Connection reset by peer
[rank3]: Exception raised from recvBytes at /opt/conda/conda-bld/pytorch_1720538438429/work/torch/csrc/distributed/c10d/Utils.hpp:672 (most recent call first):
[rank3]: frame #0: c10::Error::Error(c10::SourceLocation, std::string) + 0x96 (0x78ca3bf76f86 in /workspace/miniconda3/envs/magi/lib/python3.10/site-packages/torch/lib/libc10.so)
[rank3]: frame #1: <unknown function> + 0x599c9de (0x78ca2c19c9de in /workspace/miniconda3/envs/magi/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so)
[rank3]: frame #2: c10d::TCPStore::doWait(c10::ArrayRef<std::string>, std::chrono::duration<long, std::ratio<1l, 1000l> >) + 0x2c7 (0x78ca2c197277 in /workspace/miniconda3/envs/magi/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so)
[rank3]: frame #3: c10d::TCPStore::doGet(std::string const&) + 0x32 (0x78ca2c1975a2 in /workspace/miniconda3/envs/magi/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so)
[rank3]: frame #4: c10d::TCPStore::get(std::string const&) + 0xa1 (0x78ca2c198791 in /workspace/miniconda3/envs/magi/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so)
[rank3]: frame #5: c10d::PrefixStore::get(std::string const&) + 0x31 (0x78ca2c14d1e1 in /workspace/miniconda3/envs/magi/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so)
[rank3]: frame #6: c10d::PrefixStore::get(std::string const&) + 0x31 (0x78ca2c14d1e1 in /workspace/miniconda3/envs/magi/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so)
[rank3]: frame #7: c10d::PrefixStore::get(std::string const&) + 0x31 (0x78ca2c14d1e1 in /workspace/miniconda3/envs/magi/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so)
[rank3]: frame #8: c10d::PrefixStore::get(std::string const&) + 0x31 (0x78ca2c14d1e1 in /workspace/miniconda3/envs/magi/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so)
[rank3]: frame #9: c10d::ProcessGroupNCCL::broadcastUniqueNCCLID(ncclUniqueId*, bool, std::string const&, int) + 0xaf (0x78c9e51b50df in /workspace/miniconda3/envs/magi/lib/python3.10/site-packages/torch/lib/libtorch_cuda.so)
[rank3]: frame #10: c10d::ProcessGroupNCCL::getNCCLComm(std::string const&, c10::Device&, c10d::OpType, int, bool) + 0x114c (0x78c9e51c0ebc in /workspace/miniconda3/envs/magi/lib/python3.10/site-packages/torch/lib/libtorch_cuda.so)
[rank3]: frame #11: c10d::ProcessGroupNCCL::recv(std::vector<at::Tensor, std::allocator<at::Tensor> >&, int, int) + 0x68a (0x78c9e51deaba in /workspace/miniconda3/envs/magi/lib/python3.10/site-packages/torch/lib/libtorch_cuda.so)
[rank3]: frame #12: <unknown function> + 0x593f429 (0x78ca2c13f429 in /workspace/miniconda3/envs/magi/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so)
[rank3]: frame #13: <unknown function> + 0x5949e8a (0x78ca2c149e8a in /workspace/miniconda3/envs/magi/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so)
[rank3]: frame #14: <unknown function> + 0x4f6c42b (0x78ca2b76c42b in /workspace/miniconda3/envs/magi/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so)
[rank3]: frame #15: <unknown function> + 0x4f69ca4 (0x78ca2b769ca4 in /workspace/miniconda3/envs/magi/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so)
[rank3]: frame #16: <unknown function> + 0x176bcd8 (0x78ca27f6bcd8 in /workspace/miniconda3/envs/magi/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so)
[rank3]: frame #17: <unknown function> + 0x5950e94 (0x78ca2c150e94 in /workspace/miniconda3/envs/magi/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so)
[rank3]: frame #18: <unknown function> + 0x5956045 (0x78ca2c156045 in /workspace/miniconda3/envs/magi/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so)
[rank3]: frame #19: <unknown function> + 0xdb6a3e (0x78ca349b6a3e in /workspace/miniconda3/envs/magi/lib/python3.10/site-packages/torch/lib/libtorch_python.so)
[rank3]: frame #20: <unknown function> + 0x4b00e4 (0x78ca340b00e4 in /workspace/miniconda3/envs/magi/lib/python3.10/site-packages/torch/lib/libtorch_python.so)
[rank3]: frame #21: <unknown function> + 0x144446 (0x628476b1c446 in /workspace/miniconda3/envs/magi/bin/python)
[rank3]: frame #22: _PyObject_MakeTpCall + 0x26b (0x628476b1597b in /workspace/miniconda3/envs/magi/bin/python)
[rank3]: frame #23: <unknown function> + 0x1506e6 (0x628476b286e6 in /workspace/miniconda3/envs/magi/bin/python)
[rank3]: frame #24: _PyEval_EvalFrameDefault + 0x4c12 (0x628476b11022 in /workspace/miniconda3/envs/magi/bin/python)
[rank3]: frame #25: _PyFunction_Vectorcall + 0x6c (0x628476b1c8cc in /workspace/miniconda3/envs/magi/bin/python)
[rank3]: frame #26: _PyEval_EvalFrameDefault + 0x13cc (0x628476b0d7dc in /workspace/miniconda3/envs/magi/bin/python)
[rank3]: frame #27: _PyFunction_Vectorcall + 0x6c (0x628476b1c8cc in /workspace/miniconda3/envs/magi/bin/python)
[rank3]: frame #28: _PyEval_EvalFrameDefault + 0x72c (0x628476b0cb3c in /workspace/miniconda3/envs/magi/bin/python)
[rank3]: frame #29: _PyFunction_Vectorcall + 0x6c (0x628476b1c8cc in /workspace/miniconda3/envs/magi/bin/python)
[rank3]: frame #30: _PyEval_EvalFrameDefault + 0x72c (0x628476b0cb3c in /workspace/miniconda3/envs/magi/bin/python)
[rank3]: frame #31: _PyFunction_Vectorcall + 0x6c (0x628476b1c8cc in /workspace/miniconda3/envs/magi/bin/python)
[rank3]: frame #32: PyObject_Call + 0xbc (0x628476b28d9c in /workspace/miniconda3/envs/magi/bin/python)
[rank3]: frame #33: _PyEval_EvalFrameDefault + 0x2d84 (0x628476b0f194 in /workspace/miniconda3/envs/magi/bin/python)
[rank3]: frame #34: <unknown function> + 0x150402 (0x628476b28402 in /workspace/miniconda3/envs/magi/bin/python)
[rank3]: frame #35: PyObject_Call + 0xbc (0x628476b28d9c in /workspace/miniconda3/envs/magi/bin/python)
[rank3]: frame #36: _PyEval_EvalFrameDefault + 0x2d84 (0x628476b0f194 in /workspace/miniconda3/envs/magi/bin/python)
[rank3]: frame #37: <unknown function> + 0x150402 (0x628476b28402 in /workspace/miniconda3/envs/magi/bin/python)
[rank3]: frame #38: PyObject_Call + 0xbc (0x628476b28d9c in /workspace/miniconda3/envs/magi/bin/python)
[rank3]: frame #39: _PyEval_EvalFrameDefault + 0x2d84 (0x628476b0f194 in /workspace/miniconda3/envs/magi/bin/python)
[rank3]: frame #40: <unknown function> + 0x150402 (0x628476b28402 in /workspace/miniconda3/envs/magi/bin/python)
[rank3]: frame #41: PyObject_Call + 0xbc (0x628476b28d9c in /workspace/miniconda3/envs/magi/bin/python)
[rank3]: frame #42: _PyEval_EvalFrameDefault + 0x2d84 (0x628476b0f194 in /workspace/miniconda3/envs/magi/bin/python)
[rank3]: frame #43: _PyFunction_Vectorcall + 0x6c (0x628476b1c8cc in /workspace/miniconda3/envs/magi/bin/python)
[rank3]: frame #44: _PyEval_EvalFrameDefault + 0x72c (0x628476b0cb3c in /workspace/miniconda3/envs/magi/bin/python)
[rank3]: frame #45: <unknown function> + 0x157017 (0x628476b2f017 in /workspace/miniconda3/envs/magi/bin/python)
[rank3]: frame #46: _PyEval_EvalFrameDefault + 0xa0a (0x628476b0ce1a in /workspace/miniconda3/envs/magi/bin/python)
[rank3]: frame #47: <unknown function> + 0x157017 (0x628476b2f017 in /workspace/miniconda3/envs/magi/bin/python)
[rank3]: frame #48: _PyEval_EvalFrameDefault + 0xa0a (0x628476b0ce1a in /workspace/miniconda3/envs/magi/bin/python)
[rank3]: frame #49: _PyFunction_Vectorcall + 0x6c (0x628476b1c8cc in /workspace/miniconda3/envs/magi/bin/python)
[rank3]: frame #50: _PyEval_EvalFrameDefault + 0x320 (0x628476b0c730 in /workspace/miniconda3/envs/magi/bin/python)
[rank3]: frame #51: _PyFunction_Vectorcall + 0x6c (0x628476b1c8cc in /workspace/miniconda3/envs/magi/bin/python)
[rank3]: frame #52: _PyEval_EvalFrameDefault + 0x72c (0x628476b0cb3c in /workspace/miniconda3/envs/magi/bin/python)
[rank3]: frame #53: <unknown function> + 0x150402 (0x628476b28402 in /workspace/miniconda3/envs/magi/bin/python)
[rank3]: frame #54: _PyEval_EvalFrameDefault + 0x13cc (0x628476b0d7dc in /workspace/miniconda3/envs/magi/bin/python)
[rank3]: frame #55: _PyFunction_Vectorcall + 0x6c (0x628476b1c8cc in /workspace/miniconda3/envs/magi/bin/python)
[rank3]: frame #56: _PyEval_EvalFrameDefault + 0x320 (0x628476b0c730 in /workspace/miniconda3/envs/magi/bin/python)
[rank3]: frame #57: <unknown function> + 0x1d7870 (0x628476baf870 in /workspace/miniconda3/envs/magi/bin/python)
[rank3]: frame #58: PyEval_EvalCode + 0x87 (0x628476baf7b7 in /workspace/miniconda3/envs/magi/bin/python)
[rank3]: frame #59: <unknown function> + 0x207d1a (0x628476bdfd1a in /workspace/miniconda3/envs/magi/bin/python)
[rank3]: frame #60: <unknown function> + 0x203123 (0x628476bdb123 in /workspace/miniconda3/envs/magi/bin/python)
[rank3]: frame #61: <unknown function> + 0x9a4d1 (0x628476a724d1 in /workspace/miniconda3/envs/magi/bin/python)
[rank3]: frame #62: _PyRun_SimpleFileObject + 0x1ae (0x628476bd560e in /workspace/miniconda3/envs/magi/bin/python)
[rank3]: . This may indicate a possible application crash on rank 0 or a network set up issue.
[rank1]: Traceback (most recent call last):
[rank1]:   File "/workspace/MAGI-1/inference/pipeline/entry.py", line 54, in <module>
[rank1]:     main()
[rank1]:   File "/workspace/MAGI-1/inference/pipeline/entry.py", line 45, in main
[rank1]:     pipeline.run_image_to_video(prompt=args.prompt, image_path=args.image_path, output_path=args.output_path)
[rank1]:   File "/workspace/MAGI-1/inference/pipeline/pipeline.py", line 40, in run_image_to_video
[rank1]:     self._run(prompt, prefix_video, output_path)
[rank1]:   File "/workspace/MAGI-1/inference/pipeline/pipeline.py", line 50, in _run
[rank1]:     [
[rank1]:   File "/workspace/MAGI-1/inference/pipeline/pipeline.py", line 50, in <listcomp>
[rank1]:     [
[rank1]:   File "/workspace/MAGI-1/inference/pipeline/video_generate.py", line 763, in generate_per_chunk
[rank1]:     for _, _, chunk in sample_transport.walk():
[rank1]:   File "/workspace/MAGI-1/inference/pipeline/video_generate.py", line 725, in walk
[rank1]:     velocity = self.forward_velocity(infer_idx, 0)
[rank1]:   File "/workspace/MAGI-1/inference/pipeline/video_generate.py", line 657, in forward_velocity
[rank1]:     velocity = forward_fn(
[rank1]:   File "/workspace/MAGI-1/inference/model/dit/dit_model.py", line 503, in forward_dispatcher
[rank1]:     (out_cond_pre_and_text, out_cond_pre, out_uncond, denoise_width) = self.forward_3cfg(
[rank1]:   File "/workspace/MAGI-1/inference/model/dit/dit_model.py", line 414, in forward_3cfg
[rank1]:     out_cond_pre_and_text = self.forward(
[rank1]:   File "/workspace/miniconda3/envs/magi/lib/python3.10/site-packages/torch/utils/_contextlib.py", line 116, in decorate_context
[rank1]:     return func(*args, **kwargs)
[rank1]:   File "/workspace/MAGI-1/inference/model/dit/dit_model.py", line 379, in forward
[rank1]:     x = pp_scheduler().recv_prev_data(x.shape, x.dtype)
[rank1]:   File "/workspace/MAGI-1/inference/infra/parallelism/pipeline_parallel.py", line 74, in recv_prev_data
[rank1]:     self.irecv_prev(recv_tensor).wait()
[rank1]:   File "/workspace/MAGI-1/inference/infra/parallelism/pipeline_parallel.py", line 60, in irecv_prev
[rank1]:     handle = torch.distributed.irecv(buffer, src=mpu.get_pipeline_model_parallel_prev_rank(), group=mpu.get_pp_group())
[rank1]:   File "/workspace/miniconda3/envs/magi/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py", line 1914, in irecv
[rank1]:     return pg.recv([tensor], group_src_rank, tag)
[rank1]: torch.distributed.DistBackendError: [1] is setting up NCCL communicator and retrieving ncclUniqueId from [0] via c10d key-value store by key '0:1', but store->get('0:1') got error: Connection reset by peer
[rank1]: Exception raised from recvBytes at /opt/conda/conda-bld/pytorch_1720538438429/work/torch/csrc/distributed/c10d/Utils.hpp:672 (most recent call first):
[rank1]: frame #0: c10::Error::Error(c10::SourceLocation, std::string) + 0x96 (0x7bd236376f86 in /workspace/miniconda3/envs/magi/lib/python3.10/site-packages/torch/lib/libc10.so)
[rank1]: frame #1: <unknown function> + 0x599c9de (0x7bd22839c9de in /workspace/miniconda3/envs/magi/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so)
[rank1]: frame #2: c10d::TCPStore::doWait(c10::ArrayRef<std::string>, std::chrono::duration<long, std::ratio<1l, 1000l> >) + 0x2c7 (0x7bd228397277 in /workspace/miniconda3/envs/magi/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so)
[rank1]: frame #3: c10d::TCPStore::doGet(std::string const&) + 0x32 (0x7bd2283975a2 in /workspace/miniconda3/envs/magi/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so)
[rank1]: frame #4: c10d::TCPStore::get(std::string const&) + 0xa1 (0x7bd228398791 in /workspace/miniconda3/envs/magi/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so)
[rank1]: frame #5: c10d::PrefixStore::get(std::string const&) + 0x31 (0x7bd22834d1e1 in /workspace/miniconda3/envs/magi/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so)
[rank1]: frame #6: c10d::PrefixStore::get(std::string const&) + 0x31 (0x7bd22834d1e1 in /workspace/miniconda3/envs/magi/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so)
[rank1]: frame #7: c10d::PrefixStore::get(std::string const&) + 0x31 (0x7bd22834d1e1 in /workspace/miniconda3/envs/magi/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so)
[rank1]: frame #8: c10d::PrefixStore::get(std::string const&) + 0x31 (0x7bd22834d1e1 in /workspace/miniconda3/envs/magi/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so)
[rank1]: frame #9: c10d::ProcessGroupNCCL::broadcastUniqueNCCLID(ncclUniqueId*, bool, std::string const&, int) + 0xaf (0x7bd1e13b50df in /workspace/miniconda3/envs/magi/lib/python3.10/site-packages/torch/lib/libtorch_cuda.so)
[rank1]: frame #10: c10d::ProcessGroupNCCL::getNCCLComm(std::string const&, c10::Device&, c10d::OpType, int, bool) + 0x114c (0x7bd1e13c0ebc in /workspace/miniconda3/envs/magi/lib/python3.10/site-packages/torch/lib/libtorch_cuda.so)
[rank1]: frame #11: c10d::ProcessGroupNCCL::recv(std::vector<at::Tensor, std::allocator<at::Tensor> >&, int, int) + 0x68a (0x7bd1e13deaba in /workspace/miniconda3/envs/magi/lib/python3.10/site-packages/torch/lib/libtorch_cuda.so)
[rank1]: frame #12: <unknown function> + 0x593f429 (0x7bd22833f429 in /workspace/miniconda3/envs/magi/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so)
[rank1]: frame #13: <unknown function> + 0x5949e8a (0x7bd228349e8a in /workspace/miniconda3/envs/magi/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so)
[rank1]: frame #14: <unknown function> + 0x4f6c42b (0x7bd22796c42b in /workspace/miniconda3/envs/magi/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so)
[rank1]: frame #15: <unknown function> + 0x4f69ca4 (0x7bd227969ca4 in /workspace/miniconda3/envs/magi/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so)
[rank1]: frame #16: <unknown function> + 0x176bcd8 (0x7bd22416bcd8 in /workspace/miniconda3/envs/magi/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so)
[rank1]: frame #17: <unknown function> + 0x5950e94 (0x7bd228350e94 in /workspace/miniconda3/envs/magi/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so)
[rank1]: frame #18: <unknown function> + 0x5956045 (0x7bd228356045 in /workspace/miniconda3/envs/magi/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so)
[rank1]: frame #19: <unknown function> + 0xdb6a3e (0x7bd230bb6a3e in /workspace/miniconda3/envs/magi/lib/python3.10/site-packages/torch/lib/libtorch_python.so)
[rank1]: frame #20: <unknown function> + 0x4b00e4 (0x7bd2302b00e4 in /workspace/miniconda3/envs/magi/lib/python3.10/site-packages/torch/lib/libtorch_python.so)
[rank1]: frame #21: <unknown function> + 0x144446 (0x59d1354a6446 in /workspace/miniconda3/envs/magi/bin/python)
[rank1]: frame #22: _PyObject_MakeTpCall + 0x26b (0x59d13549f97b in /workspace/miniconda3/envs/magi/bin/python)
[rank1]: frame #23: <unknown function> + 0x1506e6 (0x59d1354b26e6 in /workspace/miniconda3/envs/magi/bin/python)
[rank1]: frame #24: _PyEval_EvalFrameDefault + 0x4c12 (0x59d13549b022 in /workspace/miniconda3/envs/magi/bin/python)
[rank1]: frame #25: _PyFunction_Vectorcall + 0x6c (0x59d1354a68cc in /workspace/miniconda3/envs/magi/bin/python)
[rank1]: frame #26: _PyEval_EvalFrameDefault + 0x13cc (0x59d1354977dc in /workspace/miniconda3/envs/magi/bin/python)
[rank1]: frame #27: _PyFunction_Vectorcall + 0x6c (0x59d1354a68cc in /workspace/miniconda3/envs/magi/bin/python)
[rank1]: frame #28: _PyEval_EvalFrameDefault + 0x72c (0x59d135496b3c in /workspace/miniconda3/envs/magi/bin/python)
[rank1]: frame #29: _PyFunction_Vectorcall + 0x6c (0x59d1354a68cc in /workspace/miniconda3/envs/magi/bin/python)
[rank1]: frame #30: _PyEval_EvalFrameDefault + 0x72c (0x59d135496b3c in /workspace/miniconda3/envs/magi/bin/python)
[rank1]: frame #31: _PyFunction_Vectorcall + 0x6c (0x59d1354a68cc in /workspace/miniconda3/envs/magi/bin/python)
[rank1]: frame #32: PyObject_Call + 0xbc (0x59d1354b2d9c in /workspace/miniconda3/envs/magi/bin/python)
[rank1]: frame #33: _PyEval_EvalFrameDefault + 0x2d84 (0x59d135499194 in /workspace/miniconda3/envs/magi/bin/python)
[rank1]: frame #34: <unknown function> + 0x150402 (0x59d1354b2402 in /workspace/miniconda3/envs/magi/bin/python)
[rank1]: frame #35: PyObject_Call + 0xbc (0x59d1354b2d9c in /workspace/miniconda3/envs/magi/bin/python)
[rank1]: frame #36: _PyEval_EvalFrameDefault + 0x2d84 (0x59d135499194 in /workspace/miniconda3/envs/magi/bin/python)
[rank1]: frame #37: <unknown function> + 0x150402 (0x59d1354b2402 in /workspace/miniconda3/envs/magi/bin/python)
[rank1]: frame #38: PyObject_Call + 0xbc (0x59d1354b2d9c in /workspace/miniconda3/envs/magi/bin/python)
[rank1]: frame #39: _PyEval_EvalFrameDefault + 0x2d84 (0x59d135499194 in /workspace/miniconda3/envs/magi/bin/python)
[rank1]: frame #40: <unknown function> + 0x150402 (0x59d1354b2402 in /workspace/miniconda3/envs/magi/bin/python)
[rank1]: frame #41: PyObject_Call + 0xbc (0x59d1354b2d9c in /workspace/miniconda3/envs/magi/bin/python)
[rank1]: frame #42: _PyEval_EvalFrameDefault + 0x2d84 (0x59d135499194 in /workspace/miniconda3/envs/magi/bin/python)
[rank1]: frame #43: _PyFunction_Vectorcall + 0x6c (0x59d1354a68cc in /workspace/miniconda3/envs/magi/bin/python)
[rank1]: frame #44: _PyEval_EvalFrameDefault + 0x72c (0x59d135496b3c in /workspace/miniconda3/envs/magi/bin/python)
[rank1]: frame #45: <unknown function> + 0x157017 (0x59d1354b9017 in /workspace/miniconda3/envs/magi/bin/python)
[rank1]: frame #46: _PyEval_EvalFrameDefault + 0xa0a (0x59d135496e1a in /workspace/miniconda3/envs/magi/bin/python)
[rank1]: frame #47: <unknown function> + 0x157017 (0x59d1354b9017 in /workspace/miniconda3/envs/magi/bin/python)
[rank1]: frame #48: _PyEval_EvalFrameDefault + 0xa0a (0x59d135496e1a in /workspace/miniconda3/envs/magi/bin/python)
[rank1]: frame #49: _PyFunction_Vectorcall + 0x6c (0x59d1354a68cc in /workspace/miniconda3/envs/magi/bin/python)
[rank1]: frame #50: _PyEval_EvalFrameDefault + 0x320 (0x59d135496730 in /workspace/miniconda3/envs/magi/bin/python)
[rank1]: frame #51: _PyFunction_Vectorcall + 0x6c (0x59d1354a68cc in /workspace/miniconda3/envs/magi/bin/python)
[rank1]: frame #52: _PyEval_EvalFrameDefault + 0x72c (0x59d135496b3c in /workspace/miniconda3/envs/magi/bin/python)
[rank1]: frame #53: <unknown function> + 0x150402 (0x59d1354b2402 in /workspace/miniconda3/envs/magi/bin/python)
[rank1]: frame #54: _PyEval_EvalFrameDefault + 0x13cc (0x59d1354977dc in /workspace/miniconda3/envs/magi/bin/python)
[rank1]: frame #55: _PyFunction_Vectorcall + 0x6c (0x59d1354a68cc in /workspace/miniconda3/envs/magi/bin/python)
[rank1]: frame #56: _PyEval_EvalFrameDefault + 0x320 (0x59d135496730 in /workspace/miniconda3/envs/magi/bin/python)
[rank1]: frame #57: <unknown function> + 0x1d7870 (0x59d135539870 in /workspace/miniconda3/envs/magi/bin/python)
[rank1]: frame #58: PyEval_EvalCode + 0x87 (0x59d1355397b7 in /workspace/miniconda3/envs/magi/bin/python)
[rank1]: frame #59: <unknown function> + 0x207d1a (0x59d135569d1a in /workspace/miniconda3/envs/magi/bin/python)
[rank1]: frame #60: <unknown function> + 0x203123 (0x59d135565123 in /workspace/miniconda3/envs/magi/bin/python)
[rank1]: frame #61: <unknown function> + 0x9a4d1 (0x59d1353fc4d1 in /workspace/miniconda3/envs/magi/bin/python)
[rank1]: frame #62: _PyRun_SimpleFileObject + 0x1ae (0x59d13555f60e in /workspace/miniconda3/envs/magi/bin/python)
[rank1]: . This may indicate a possible application crash on rank 0 or a network set up issue.
[rank2]: Traceback (most recent call last):
[rank2]:   File "/workspace/MAGI-1/inference/pipeline/entry.py", line 54, in <module>
[rank2]:     main()
[rank2]:   File "/workspace/MAGI-1/inference/pipeline/entry.py", line 45, in main
[rank2]:     pipeline.run_image_to_video(prompt=args.prompt, image_path=args.image_path, output_path=args.output_path)
[rank2]:   File "/workspace/MAGI-1/inference/pipeline/pipeline.py", line 40, in run_image_to_video
[rank2]:     self._run(prompt, prefix_video, output_path)
[rank2]:   File "/workspace/MAGI-1/inference/pipeline/pipeline.py", line 50, in _run
[rank2]:     [
[rank2]:   File "/workspace/MAGI-1/inference/pipeline/pipeline.py", line 50, in <listcomp>
[rank2]:     [
[rank2]:   File "/workspace/MAGI-1/inference/pipeline/video_generate.py", line 763, in generate_per_chunk
[rank2]:     for _, _, chunk in sample_transport.walk():
[rank2]:   File "/workspace/MAGI-1/inference/pipeline/video_generate.py", line 725, in walk
[rank2]:     velocity = self.forward_velocity(infer_idx, 0)
[rank2]:   File "/workspace/MAGI-1/inference/pipeline/video_generate.py", line 657, in forward_velocity
[rank2]:     velocity = forward_fn(
[rank2]:   File "/workspace/MAGI-1/inference/model/dit/dit_model.py", line 503, in forward_dispatcher
[rank2]:     (out_cond_pre_and_text, out_cond_pre, out_uncond, denoise_width) = self.forward_3cfg(
[rank2]:   File "/workspace/MAGI-1/inference/model/dit/dit_model.py", line 414, in forward_3cfg
[rank2]:     out_cond_pre_and_text = self.forward(
[rank2]:   File "/workspace/miniconda3/envs/magi/lib/python3.10/site-packages/torch/utils/_contextlib.py", line 116, in decorate_context
[rank2]:     return func(*args, **kwargs)
[rank2]:   File "/workspace/MAGI-1/inference/model/dit/dit_model.py", line 379, in forward
[rank2]:     x = pp_scheduler().recv_prev_data(x.shape, x.dtype)
[rank2]:   File "/workspace/MAGI-1/inference/infra/parallelism/pipeline_parallel.py", line 74, in recv_prev_data
[rank2]:     self.irecv_prev(recv_tensor).wait()
[rank2]:   File "/workspace/MAGI-1/inference/infra/parallelism/pipeline_parallel.py", line 60, in irecv_prev
[rank2]:     handle = torch.distributed.irecv(buffer, src=mpu.get_pipeline_model_parallel_prev_rank(), group=mpu.get_pp_group())
[rank2]:   File "/workspace/miniconda3/envs/magi/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py", line 1914, in irecv
[rank2]:     return pg.recv([tensor], group_src_rank, tag)
[rank2]: torch.distributed.DistBackendError: [2] is setting up NCCL communicator and retrieving ncclUniqueId from [0] via c10d key-value store by key '1:2', but store->get('1:2') got error: Connection reset by peer
[rank2]: Exception raised from recvBytes at /opt/conda/conda-bld/pytorch_1720538438429/work/torch/csrc/distributed/c10d/Utils.hpp:672 (most recent call first):
[rank2]: frame #0: c10::Error::Error(c10::SourceLocation, std::string) + 0x96 (0x7a9534176f86 in /workspace/miniconda3/envs/magi/lib/python3.10/site-packages/torch/lib/libc10.so)
[rank2]: frame #1: <unknown function> + 0x599c9de (0x7a952619c9de in /workspace/miniconda3/envs/magi/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so)
[rank2]: frame #2: c10d::TCPStore::doWait(c10::ArrayRef<std::string>, std::chrono::duration<long, std::ratio<1l, 1000l> >) + 0x2c7 (0x7a9526197277 in /workspace/miniconda3/envs/magi/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so)
[rank2]: frame #3: c10d::TCPStore::doGet(std::string const&) + 0x32 (0x7a95261975a2 in /workspace/miniconda3/envs/magi/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so)
[rank2]: frame #4: c10d::TCPStore::get(std::string const&) + 0xa1 (0x7a9526198791 in /workspace/miniconda3/envs/magi/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so)
[rank2]: frame #5: c10d::PrefixStore::get(std::string const&) + 0x31 (0x7a952614d1e1 in /workspace/miniconda3/envs/magi/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so)
[rank2]: frame #6: c10d::PrefixStore::get(std::string const&) + 0x31 (0x7a952614d1e1 in /workspace/miniconda3/envs/magi/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so)
[rank2]: frame #7: c10d::PrefixStore::get(std::string const&) + 0x31 (0x7a952614d1e1 in /workspace/miniconda3/envs/magi/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so)
[rank2]: frame #8: c10d::PrefixStore::get(std::string const&) + 0x31 (0x7a952614d1e1 in /workspace/miniconda3/envs/magi/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so)
[rank2]: frame #9: c10d::ProcessGroupNCCL::broadcastUniqueNCCLID(ncclUniqueId*, bool, std::string const&, int) + 0xaf (0x7a94df1b50df in /workspace/miniconda3/envs/magi/lib/python3.10/site-packages/torch/lib/libtorch_cuda.so)
[rank2]: frame #10: c10d::ProcessGroupNCCL::getNCCLComm(std::string const&, c10::Device&, c10d::OpType, int, bool) + 0x114c (0x7a94df1c0ebc in /workspace/miniconda3/envs/magi/lib/python3.10/site-packages/torch/lib/libtorch_cuda.so)
[rank2]: frame #11: c10d::ProcessGroupNCCL::recv(std::vector<at::Tensor, std::allocator<at::Tensor> >&, int, int) + 0x68a (0x7a94df1deaba in /workspace/miniconda3/envs/magi/lib/python3.10/site-packages/torch/lib/libtorch_cuda.so)
[rank2]: frame #12: <unknown function> + 0x593f429 (0x7a952613f429 in /workspace/miniconda3/envs/magi/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so)
[rank2]: frame #13: <unknown function> + 0x5949e8a (0x7a9526149e8a in /workspace/miniconda3/envs/magi/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so)
[rank2]: frame #14: <unknown function> + 0x4f6c42b (0x7a952576c42b in /workspace/miniconda3/envs/magi/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so)
[rank2]: frame #15: <unknown function> + 0x4f69ca4 (0x7a9525769ca4 in /workspace/miniconda3/envs/magi/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so)
[rank2]: frame #16: <unknown function> + 0x176bcd8 (0x7a9521f6bcd8 in /workspace/miniconda3/envs/magi/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so)
[rank2]: frame #17: <unknown function> + 0x5950e94 (0x7a9526150e94 in /workspace/miniconda3/envs/magi/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so)
[rank2]: frame #18: <unknown function> + 0x5956045 (0x7a9526156045 in /workspace/miniconda3/envs/magi/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so)
[rank2]: frame #19: <unknown function> + 0xdb6a3e (0x7a952e9b6a3e in /workspace/miniconda3/envs/magi/lib/python3.10/site-packages/torch/lib/libtorch_python.so)
[rank2]: frame #20: <unknown function> + 0x4b00e4 (0x7a952e0b00e4 in /workspace/miniconda3/envs/magi/lib/python3.10/site-packages/torch/lib/libtorch_python.so)
[rank2]: frame #21: <unknown function> + 0x144446 (0x57f889c9b446 in /workspace/miniconda3/envs/magi/bin/python)
[rank2]: frame #22: _PyObject_MakeTpCall + 0x26b (0x57f889c9497b in /workspace/miniconda3/envs/magi/bin/python)
[rank2]: frame #23: <unknown function> + 0x1506e6 (0x57f889ca76e6 in /workspace/miniconda3/envs/magi/bin/python)
[rank2]: frame #24: _PyEval_EvalFrameDefault + 0x4c12 (0x57f889c90022 in /workspace/miniconda3/envs/magi/bin/python)
[rank2]: frame #25: _PyFunction_Vectorcall + 0x6c (0x57f889c9b8cc in /workspace/miniconda3/envs/magi/bin/python)
[rank2]: frame #26: _PyEval_EvalFrameDefault + 0x13cc (0x57f889c8c7dc in /workspace/miniconda3/envs/magi/bin/python)
[rank2]: frame #27: _PyFunction_Vectorcall + 0x6c (0x57f889c9b8cc in /workspace/miniconda3/envs/magi/bin/python)
[rank2]: frame #28: _PyEval_EvalFrameDefault + 0x72c (0x57f889c8bb3c in /workspace/miniconda3/envs/magi/bin/python)
[rank2]: frame #29: _PyFunction_Vectorcall + 0x6c (0x57f889c9b8cc in /workspace/miniconda3/envs/magi/bin/python)
[rank2]: frame #30: _PyEval_EvalFrameDefault + 0x72c (0x57f889c8bb3c in /workspace/miniconda3/envs/magi/bin/python)
[rank2]: frame #31: _PyFunction_Vectorcall + 0x6c (0x57f889c9b8cc in /workspace/miniconda3/envs/magi/bin/python)
[rank2]: frame #32: PyObject_Call + 0xbc (0x57f889ca7d9c in /workspace/miniconda3/envs/magi/bin/python)
[rank2]: frame #33: _PyEval_EvalFrameDefault + 0x2d84 (0x57f889c8e194 in /workspace/miniconda3/envs/magi/bin/python)
[rank2]: frame #34: <unknown function> + 0x150402 (0x57f889ca7402 in /workspace/miniconda3/envs/magi/bin/python)
[rank2]: frame #35: PyObject_Call + 0xbc (0x57f889ca7d9c in /workspace/miniconda3/envs/magi/bin/python)
[rank2]: frame #36: _PyEval_EvalFrameDefault + 0x2d84 (0x57f889c8e194 in /workspace/miniconda3/envs/magi/bin/python)
[rank2]: frame #37: <unknown function> + 0x150402 (0x57f889ca7402 in /workspace/miniconda3/envs/magi/bin/python)
[rank2]: frame #38: PyObject_Call + 0xbc (0x57f889ca7d9c in /workspace/miniconda3/envs/magi/bin/python)
[rank2]: frame #39: _PyEval_EvalFrameDefault + 0x2d84 (0x57f889c8e194 in /workspace/miniconda3/envs/magi/bin/python)
[rank2]: frame #40: <unknown function> + 0x150402 (0x57f889ca7402 in /workspace/miniconda3/envs/magi/bin/python)
[rank2]: frame #41: PyObject_Call + 0xbc (0x57f889ca7d9c in /workspace/miniconda3/envs/magi/bin/python)
[rank2]: frame #42: _PyEval_EvalFrameDefault + 0x2d84 (0x57f889c8e194 in /workspace/miniconda3/envs/magi/bin/python)
[rank2]: frame #43: _PyFunction_Vectorcall + 0x6c (0x57f889c9b8cc in /workspace/miniconda3/envs/magi/bin/python)
[rank2]: frame #44: _PyEval_EvalFrameDefault + 0x72c (0x57f889c8bb3c in /workspace/miniconda3/envs/magi/bin/python)
[rank2]: frame #45: <unknown function> + 0x157017 (0x57f889cae017 in /workspace/miniconda3/envs/magi/bin/python)
[rank2]: frame #46: _PyEval_EvalFrameDefault + 0xa0a (0x57f889c8be1a in /workspace/miniconda3/envs/magi/bin/python)
[rank2]: frame #47: <unknown function> + 0x157017 (0x57f889cae017 in /workspace/miniconda3/envs/magi/bin/python)
[rank2]: frame #48: _PyEval_EvalFrameDefault + 0xa0a (0x57f889c8be1a in /workspace/miniconda3/envs/magi/bin/python)
[rank2]: frame #49: _PyFunction_Vectorcall + 0x6c (0x57f889c9b8cc in /workspace/miniconda3/envs/magi/bin/python)
[rank2]: frame #50: _PyEval_EvalFrameDefault + 0x320 (0x57f889c8b730 in /workspace/miniconda3/envs/magi/bin/python)
[rank2]: frame #51: _PyFunction_Vectorcall + 0x6c (0x57f889c9b8cc in /workspace/miniconda3/envs/magi/bin/python)
[rank2]: frame #52: _PyEval_EvalFrameDefault + 0x72c (0x57f889c8bb3c in /workspace/miniconda3/envs/magi/bin/python)
[rank2]: frame #53: <unknown function> + 0x150402 (0x57f889ca7402 in /workspace/miniconda3/envs/magi/bin/python)
[rank2]: frame #54: _PyEval_EvalFrameDefault + 0x13cc (0x57f889c8c7dc in /workspace/miniconda3/envs/magi/bin/python)
[rank2]: frame #55: _PyFunction_Vectorcall + 0x6c (0x57f889c9b8cc in /workspace/miniconda3/envs/magi/bin/python)
[rank2]: frame #56: _PyEval_EvalFrameDefault + 0x320 (0x57f889c8b730 in /workspace/miniconda3/envs/magi/bin/python)
[rank2]: frame #57: <unknown function> + 0x1d7870 (0x57f889d2e870 in /workspace/miniconda3/envs/magi/bin/python)
[rank2]: frame #58: PyEval_EvalCode + 0x87 (0x57f889d2e7b7 in /workspace/miniconda3/envs/magi/bin/python)
[rank2]: frame #59: <unknown function> + 0x207d1a (0x57f889d5ed1a in /workspace/miniconda3/envs/magi/bin/python)
[rank2]: frame #60: <unknown function> + 0x203123 (0x57f889d5a123 in /workspace/miniconda3/envs/magi/bin/python)
[rank2]: frame #61: <unknown function> + 0x9a4d1 (0x57f889bf14d1 in /workspace/miniconda3/envs/magi/bin/python)
[rank2]: frame #62: _PyRun_SimpleFileObject + 0x1ae (0x57f889d5460e in /workspace/miniconda3/envs/magi/bin/python)
[rank2]: . This may indicate a possible application crash on rank 0 or a network set up issue.
W0426 04:57:14.279000 130591876859712 torch/distributed/elastic/multiprocessing/api.py:858] Sending process 3018 closing signal SIGTERM
W0426 04:57:14.281000 130591876859712 torch/distributed/elastic/multiprocessing/api.py:858] Sending process 3019 closing signal SIGTERM
W0426 04:57:14.283000 130591876859712 torch/distributed/elastic/multiprocessing/api.py:858] Sending process 3020 closing signal SIGTERM
E0426 04:57:14.766000 130591876859712 torch/distributed/elastic/multiprocessing/api.py:833] failed (exitcode: 1) local_rank: 0 (pid: 3017) of binary: /workspace/miniconda3/envs/magi/bin/python
Traceback (most recent call last):
  File "/workspace/miniconda3/envs/magi/bin/torchrun", line 33, in <module>
    sys.exit(load_entry_point('torch==2.4.0', 'console_scripts', 'torchrun')())
  File "/workspace/miniconda3/envs/magi/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/errors/__init__.py", line 348, in wrapper
    return f(*args, **kwargs)
  File "/workspace/miniconda3/envs/magi/lib/python3.10/site-packages/torch/distributed/run.py", line 901, in main
    run(args)
  File "/workspace/miniconda3/envs/magi/lib/python3.10/site-packages/torch/distributed/run.py", line 892, in run
    elastic_launch(
  File "/workspace/miniconda3/envs/magi/lib/python3.10/site-packages/torch/distributed/launcher/api.py", line 133, in __call__
    return launch_agent(self._config, self._entrypoint, list(args))
  File "/workspace/miniconda3/envs/magi/lib/python3.10/site-packages/torch/distributed/launcher/api.py", line 264, in launch_agent
    raise ChildFailedError(
torch.distributed.elastic.multiprocessing.errors.ChildFailedError: 
============================================================
inference/pipeline/entry.py FAILED
------------------------------------------------------------
Failures:
  <NO_OTHER_FAILURES>
------------------------------------------------------------
Root Cause (first observed failure):
[0]:
  time      : 2025-04-26_04:57:14
  host      : 090fdaa4401b
  rank      : 0 (local_rank: 0)
  exitcode  : 1 (pid: 3017)
  error_file: <N/A>
  traceback : To enable traceback see: https://pytorch.org/docs/stable/elastic/errors.html
============================================================
Your need to confirm your account before you can post a new comment.

Sign up or log in to comment