Redis semantic caching embedding model based on Alibaba-NLP/gte-modernbert-base
This is a sentence-transformers model finetuned from Alibaba-NLP/gte-modernbert-base on the Medical dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity for the purpose of semantic caching in the medical domain.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: Alibaba-NLP/gte-modernbert-base
- Maximum Sequence Length: 8192 tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Cosine Similarity
- Training Dataset:
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: ModernBertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the ๐ค Hub
model = SentenceTransformer("redis/langcache-embed-medical-v1")
# Run inference
sentences = [
'Will the value of Indian rupee increase after the ban of 500 and 1000 rupee notes?',
'What will be the implications of banning 500 and 1000 rupees currency notes on Indian economy?',
"Are Danish Sait's prank calls fake?",
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
Binary Classification
Metric | Value |
---|---|
cosine_accuracy | 0.92 |
cosine_f1 | 0.93 |
cosine_precision | 0.92 |
cosine_recall | 0.93 |
cosine_ap | 0.97 |
Training Dataset
Medical
- Dataset: Medical dataset
- Size: 2438 samples
- Columns:
question_1
,question_2
, andlabel
Evaluation Dataset
Medical
- Dataset: Medical dataset
- Size: 610 samples
- Columns:
question_1
,question_2
, andlabel
Citation
BibTeX
Redis Langcache-embed Models]
@inproceedings{langcache-embed-v1,
title = "Advancing Semantic Caching for LLMs with Domain-Specific Embeddings and Synthetic Data",
author = "Gill, Cechmanek, Hutcherson, Rajamohan, Agarwal, Gulzar, Singh, Dion",
month = "04",
year = "2025",
url = "https://arxiv.org/abs/2504.02268",
}
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
- Downloads last month
- 333
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for redis/langcache-embed-medical-v1
Base model
answerdotai/ModernBERT-base
Finetuned
Alibaba-NLP/gte-modernbert-base
Evaluation results
- Cosine Accuracy on Medicalself-reported0.920
- Cosine F1 on Medicalself-reported0.930
- Cosine Precision on Medicalself-reported0.920
- Cosine Recall on Medicalself-reported0.930
- Cosine Ap on Medicalself-reported0.970