train_qnli_1744902606
This model is a fine-tuned version of google/gemma-3-1b-it on the qnli dataset. It achieves the following results on the evaluation set:
- Loss: 0.0371
- Num Input Tokens Seen: 73102784
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 123
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- training_steps: 40000
Training results
Training Loss | Epoch | Step | Validation Loss | Input Tokens Seen |
---|---|---|---|---|
0.0898 | 0.0339 | 200 | 0.0801 | 367200 |
0.0562 | 0.0679 | 400 | 0.0682 | 737312 |
0.0644 | 0.1018 | 600 | 0.0694 | 1102816 |
0.0614 | 0.1358 | 800 | 0.0580 | 1468736 |
0.0318 | 0.1697 | 1000 | 0.0552 | 1829952 |
0.0671 | 0.2037 | 1200 | 0.0516 | 2199200 |
0.0582 | 0.2376 | 1400 | 0.0509 | 2565536 |
0.0508 | 0.2716 | 1600 | 0.0522 | 2930336 |
0.0514 | 0.3055 | 1800 | 0.0492 | 3297216 |
0.0578 | 0.3395 | 2000 | 0.0466 | 3666880 |
0.0529 | 0.3734 | 2200 | 0.0446 | 4036544 |
0.0403 | 0.4073 | 2400 | 0.0459 | 4400256 |
0.0463 | 0.4413 | 2600 | 0.0544 | 4765408 |
0.065 | 0.4752 | 2800 | 0.0456 | 5130336 |
0.0477 | 0.5092 | 3000 | 0.0427 | 5495328 |
0.057 | 0.5431 | 3200 | 0.0415 | 5857280 |
0.0669 | 0.5771 | 3400 | 0.0421 | 6221504 |
0.0378 | 0.6110 | 3600 | 0.0428 | 6589568 |
0.0461 | 0.6450 | 3800 | 0.0434 | 6959584 |
0.0348 | 0.6789 | 4000 | 0.0434 | 7323712 |
0.051 | 0.7129 | 4200 | 0.0424 | 7690880 |
0.0322 | 0.7468 | 4400 | 0.0418 | 8053632 |
0.0414 | 0.7808 | 4600 | 0.0406 | 8417216 |
0.0495 | 0.8147 | 4800 | 0.0406 | 8782624 |
0.0455 | 0.8486 | 5000 | 0.0439 | 9145728 |
0.0537 | 0.8826 | 5200 | 0.0403 | 9513920 |
0.04 | 0.9165 | 5400 | 0.0409 | 9877152 |
0.0324 | 0.9505 | 5600 | 0.0397 | 10240128 |
0.0535 | 0.9844 | 5800 | 0.0392 | 10606272 |
0.0408 | 1.0183 | 6000 | 0.0403 | 10971744 |
0.0453 | 1.0523 | 6200 | 0.0423 | 11335648 |
0.0401 | 1.0862 | 6400 | 0.0424 | 11702592 |
0.0442 | 1.1202 | 6600 | 0.0476 | 12070112 |
0.0372 | 1.1541 | 6800 | 0.0390 | 12437088 |
0.0326 | 1.1881 | 7000 | 0.0391 | 12802848 |
0.0412 | 1.2220 | 7200 | 0.0413 | 13171040 |
0.0292 | 1.2560 | 7400 | 0.0397 | 13539968 |
0.0753 | 1.2899 | 7600 | 0.0427 | 13904864 |
0.0577 | 1.3238 | 7800 | 0.0402 | 14272512 |
0.0361 | 1.3578 | 8000 | 0.0381 | 14634880 |
0.0222 | 1.3917 | 8200 | 0.0386 | 15002592 |
0.0266 | 1.4257 | 8400 | 0.0429 | 15369600 |
0.0196 | 1.4596 | 8600 | 0.0382 | 15731008 |
0.0247 | 1.4936 | 8800 | 0.0390 | 16092896 |
0.0682 | 1.5275 | 9000 | 0.0400 | 16458208 |
0.049 | 1.5615 | 9200 | 0.0387 | 16823328 |
0.0613 | 1.5954 | 9400 | 0.0383 | 17185120 |
0.0385 | 1.6294 | 9600 | 0.0374 | 17551488 |
0.0497 | 1.6633 | 9800 | 0.0376 | 17914752 |
0.0469 | 1.6972 | 10000 | 0.0383 | 18281888 |
0.0365 | 1.7312 | 10200 | 0.0401 | 18645120 |
0.0498 | 1.7651 | 10400 | 0.0381 | 19010848 |
0.0379 | 1.7991 | 10600 | 0.0379 | 19377344 |
0.0237 | 1.8330 | 10800 | 0.0391 | 19739232 |
0.0261 | 1.8670 | 11000 | 0.0378 | 20107584 |
0.0447 | 1.9009 | 11200 | 0.0381 | 20470912 |
0.0389 | 1.9349 | 11400 | 0.0377 | 20832736 |
0.032 | 1.9688 | 11600 | 0.0378 | 21199808 |
0.0346 | 2.0027 | 11800 | 0.0371 | 21568384 |
0.0255 | 2.0367 | 12000 | 0.0423 | 21931424 |
0.0267 | 2.0706 | 12200 | 0.0384 | 22294816 |
0.0299 | 2.1046 | 12400 | 0.0427 | 22655968 |
0.0243 | 2.1385 | 12600 | 0.0440 | 23020896 |
0.0381 | 2.1724 | 12800 | 0.0394 | 23383104 |
0.0146 | 2.2064 | 13000 | 0.0394 | 23746656 |
0.0214 | 2.2403 | 13200 | 0.0388 | 24110208 |
0.0479 | 2.2743 | 13400 | 0.0372 | 24476544 |
0.0325 | 2.3082 | 13600 | 0.0385 | 24841440 |
0.0293 | 2.3422 | 13800 | 0.0392 | 25206624 |
0.0163 | 2.3761 | 14000 | 0.0403 | 25573280 |
0.033 | 2.4101 | 14200 | 0.0405 | 25939392 |
0.0217 | 2.4440 | 14400 | 0.0400 | 26303968 |
0.0319 | 2.4780 | 14600 | 0.0408 | 26666944 |
0.0511 | 2.5119 | 14800 | 0.0389 | 27035136 |
0.0265 | 2.5458 | 15000 | 0.0468 | 27406144 |
0.027 | 2.5798 | 15200 | 0.0383 | 27772832 |
0.0183 | 2.6137 | 15400 | 0.0413 | 28134848 |
0.0104 | 2.6477 | 15600 | 0.0381 | 28505504 |
0.0182 | 2.6816 | 15800 | 0.0379 | 28870784 |
0.0489 | 2.7156 | 16000 | 0.0384 | 29233952 |
0.0451 | 2.7495 | 16200 | 0.0381 | 29603328 |
0.0274 | 2.7835 | 16400 | 0.0406 | 29968768 |
0.0247 | 2.8174 | 16600 | 0.0424 | 30334496 |
0.0182 | 2.8514 | 16800 | 0.0401 | 30703616 |
0.038 | 2.8853 | 17000 | 0.0383 | 31068224 |
0.029 | 2.9193 | 17200 | 0.0405 | 31438688 |
0.02 | 2.9532 | 17400 | 0.0377 | 31802368 |
0.0345 | 2.9871 | 17600 | 0.0389 | 32165728 |
0.0076 | 3.0210 | 17800 | 0.0448 | 32528896 |
0.0214 | 3.0550 | 18000 | 0.0438 | 32897376 |
0.0316 | 3.0889 | 18200 | 0.0436 | 33262688 |
0.0128 | 3.1229 | 18400 | 0.0466 | 33623616 |
0.0179 | 3.1568 | 18600 | 0.0442 | 33989920 |
0.0272 | 3.1908 | 18800 | 0.0457 | 34354528 |
0.0171 | 3.2247 | 19000 | 0.0471 | 34724672 |
0.0327 | 3.2587 | 19200 | 0.0459 | 35092288 |
0.026 | 3.2926 | 19400 | 0.0445 | 35458048 |
0.0206 | 3.3266 | 19600 | 0.0477 | 35826240 |
0.0286 | 3.3605 | 19800 | 0.0470 | 36191232 |
0.0131 | 3.3944 | 20000 | 0.0457 | 36553088 |
0.0068 | 3.4284 | 20200 | 0.0459 | 36917376 |
0.0211 | 3.4623 | 20400 | 0.0442 | 37284512 |
0.0231 | 3.4963 | 20600 | 0.0501 | 37649248 |
0.019 | 3.5302 | 20800 | 0.0492 | 38012256 |
0.0074 | 3.5642 | 21000 | 0.0467 | 38378592 |
0.0128 | 3.5981 | 21200 | 0.0504 | 38743328 |
0.0086 | 3.6321 | 21400 | 0.0448 | 39111200 |
0.0135 | 3.6660 | 21600 | 0.0474 | 39473536 |
0.0162 | 3.7000 | 21800 | 0.0456 | 39836704 |
0.0172 | 3.7339 | 22000 | 0.0436 | 40202176 |
0.012 | 3.7679 | 22200 | 0.0445 | 40568544 |
0.0169 | 3.8018 | 22400 | 0.0455 | 40932032 |
0.0253 | 3.8357 | 22600 | 0.0437 | 41296544 |
0.0123 | 3.8697 | 22800 | 0.0454 | 41661472 |
0.0147 | 3.9036 | 23000 | 0.0460 | 42031616 |
0.0102 | 3.9376 | 23200 | 0.0453 | 42395200 |
0.0168 | 3.9715 | 23400 | 0.0451 | 42760960 |
0.003 | 4.0054 | 23600 | 0.0480 | 43128480 |
0.008 | 4.0394 | 23800 | 0.0485 | 43492288 |
0.0094 | 4.0733 | 24000 | 0.0513 | 43859360 |
0.0151 | 4.1073 | 24200 | 0.0591 | 44222400 |
0.0028 | 4.1412 | 24400 | 0.0590 | 44585632 |
0.0037 | 4.1752 | 24600 | 0.0627 | 44956064 |
0.0035 | 4.2091 | 24800 | 0.0609 | 45323456 |
0.0077 | 4.2431 | 25000 | 0.0584 | 45688544 |
0.0164 | 4.2770 | 25200 | 0.0547 | 46054272 |
0.0164 | 4.3109 | 25400 | 0.0616 | 46420608 |
0.0127 | 4.3449 | 25600 | 0.0559 | 46787232 |
0.0224 | 4.3788 | 25800 | 0.0569 | 47151008 |
0.002 | 4.4128 | 26000 | 0.0547 | 47516064 |
0.0043 | 4.4467 | 26200 | 0.0612 | 47880960 |
0.0038 | 4.4807 | 26400 | 0.0576 | 48244480 |
0.0251 | 4.5146 | 26600 | 0.0549 | 48612352 |
0.0054 | 4.5486 | 26800 | 0.0569 | 48977376 |
0.0139 | 4.5825 | 27000 | 0.0543 | 49343328 |
0.0043 | 4.6165 | 27200 | 0.0558 | 49712064 |
0.0215 | 4.6504 | 27400 | 0.0580 | 50076832 |
0.003 | 4.6843 | 27600 | 0.0612 | 50439616 |
0.0027 | 4.7183 | 27800 | 0.0604 | 50803552 |
0.0148 | 4.7522 | 28000 | 0.0574 | 51165472 |
0.0049 | 4.7862 | 28200 | 0.0568 | 51527808 |
0.0091 | 4.8201 | 28400 | 0.0593 | 51895200 |
0.0187 | 4.8541 | 28600 | 0.0556 | 52259648 |
0.016 | 4.8880 | 28800 | 0.0572 | 52628032 |
0.0128 | 4.9220 | 29000 | 0.0587 | 52997024 |
0.0294 | 4.9559 | 29200 | 0.0565 | 53364352 |
0.0075 | 4.9899 | 29400 | 0.0543 | 53730624 |
0.0027 | 5.0238 | 29600 | 0.0597 | 54094208 |
0.0005 | 5.0577 | 29800 | 0.0667 | 54461312 |
0.0025 | 5.0917 | 30000 | 0.0701 | 54825216 |
0.0008 | 5.1256 | 30200 | 0.0630 | 55189504 |
0.0117 | 5.1595 | 30400 | 0.0680 | 55553280 |
0.0037 | 5.1935 | 30600 | 0.0669 | 55917792 |
0.0082 | 5.2274 | 30800 | 0.0647 | 56282176 |
0.0081 | 5.2614 | 31000 | 0.0695 | 56643104 |
0.0009 | 5.2953 | 31200 | 0.0686 | 57005120 |
0.0081 | 5.3293 | 31400 | 0.0704 | 57373152 |
0.0262 | 5.3632 | 31600 | 0.0708 | 57735872 |
0.0038 | 5.3972 | 31800 | 0.0743 | 58101536 |
0.006 | 5.4311 | 32000 | 0.0705 | 58472288 |
0.0041 | 5.4651 | 32200 | 0.0664 | 58840960 |
0.007 | 5.4990 | 32400 | 0.0684 | 59204992 |
0.0105 | 5.5329 | 32600 | 0.0679 | 59570752 |
0.0128 | 5.5669 | 32800 | 0.0753 | 59937728 |
0.0017 | 5.6008 | 33000 | 0.0706 | 60306240 |
0.008 | 5.6348 | 33200 | 0.0724 | 60675168 |
0.0103 | 5.6687 | 33400 | 0.0732 | 61042176 |
0.014 | 5.7027 | 33600 | 0.0721 | 61409120 |
0.0045 | 5.7366 | 33800 | 0.0715 | 61775168 |
0.0008 | 5.7706 | 34000 | 0.0717 | 62143616 |
0.0134 | 5.8045 | 34200 | 0.0742 | 62507552 |
0.0127 | 5.8385 | 34400 | 0.0731 | 62872928 |
0.0041 | 5.8724 | 34600 | 0.0733 | 63234816 |
0.0006 | 5.9064 | 34800 | 0.0747 | 63599616 |
0.0028 | 5.9403 | 35000 | 0.0746 | 63966688 |
0.0006 | 5.9742 | 35200 | 0.0752 | 64332704 |
0.0091 | 6.0081 | 35400 | 0.0762 | 64693664 |
0.0006 | 6.0421 | 35600 | 0.0755 | 65053728 |
0.0099 | 6.0760 | 35800 | 0.0791 | 65419648 |
0.003 | 6.1100 | 36000 | 0.0794 | 65786464 |
0.0011 | 6.1439 | 36200 | 0.0783 | 66152416 |
0.0004 | 6.1779 | 36400 | 0.0806 | 66522528 |
0.0093 | 6.2118 | 36600 | 0.0813 | 66888512 |
0.0016 | 6.2458 | 36800 | 0.0806 | 67255840 |
0.009 | 6.2797 | 37000 | 0.0809 | 67620416 |
0.0139 | 6.3137 | 37200 | 0.0815 | 67983360 |
0.024 | 6.3476 | 37400 | 0.0813 | 68348480 |
0.0015 | 6.3816 | 37600 | 0.0812 | 68715840 |
0.0013 | 6.4155 | 37800 | 0.0813 | 69081536 |
0.0094 | 6.4494 | 38000 | 0.0820 | 69446208 |
0.0022 | 6.4834 | 38200 | 0.0818 | 69813728 |
0.0011 | 6.5173 | 38400 | 0.0818 | 70182464 |
0.0014 | 6.5513 | 38600 | 0.0817 | 70547904 |
0.0007 | 6.5852 | 38800 | 0.0813 | 70911456 |
0.0009 | 6.6192 | 39000 | 0.0811 | 71277536 |
0.0126 | 6.6531 | 39200 | 0.0811 | 71642624 |
0.0108 | 6.6871 | 39400 | 0.0812 | 72006592 |
0.0007 | 6.7210 | 39600 | 0.0812 | 72370176 |
0.0008 | 6.7550 | 39800 | 0.0813 | 72737088 |
0.0011 | 6.7889 | 40000 | 0.0814 | 73102784 |
Framework versions
- PEFT 0.15.1
- Transformers 4.51.3
- Pytorch 2.6.0+cu124
- Datasets 3.5.0
- Tokenizers 0.21.1
- Downloads last month
- 6
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support