Facial-Landmark-Detection: Optimized for Mobile Deployment
Facial landmark predictor with 3DMM
Real-time 3D facial landmark detection optimized for mobile and edge.
This model is an implementation of Facial-Landmark-Detection found here.
This repository provides scripts to run Facial-Landmark-Detection on Qualcomm® devices. More details on model performance across various devices, can be found here.
Model Details
- Model Type: Model_use_case.pose_estimation
- Model Stats:
- Input resolution: 128x128
- Number of parameters: 5.424M
- Model size (float): 21.256MB
- Model size (w8a8): 5.314MB
Model | Precision | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Primary Compute Unit | Target Model |
---|---|---|---|---|---|---|---|---|
Facial-Landmark-Detection | float | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | TFLITE | 1.157 ms | 0 - 12 MB | NPU | Facial-Landmark-Detection.tflite |
Facial-Landmark-Detection | float | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | QNN | 1.146 ms | 0 - 9 MB | NPU | Use Export Script |
Facial-Landmark-Detection | float | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | TFLITE | 0.478 ms | 0 - 32 MB | NPU | Facial-Landmark-Detection.tflite |
Facial-Landmark-Detection | float | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | QNN | 0.543 ms | 0 - 21 MB | NPU | Use Export Script |
Facial-Landmark-Detection | float | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | TFLITE | 0.287 ms | 0 - 94 MB | NPU | Facial-Landmark-Detection.tflite |
Facial-Landmark-Detection | float | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | QNN | 0.281 ms | 0 - 2 MB | NPU | Use Export Script |
Facial-Landmark-Detection | float | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | TFLITE | 0.518 ms | 0 - 16 MB | NPU | Facial-Landmark-Detection.tflite |
Facial-Landmark-Detection | float | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | QNN | 0.497 ms | 0 - 14 MB | NPU | Use Export Script |
Facial-Landmark-Detection | float | SA7255P ADP | Qualcomm® SA7255P | TFLITE | 1.157 ms | 0 - 12 MB | NPU | Facial-Landmark-Detection.tflite |
Facial-Landmark-Detection | float | SA7255P ADP | Qualcomm® SA7255P | QNN | 1.146 ms | 0 - 9 MB | NPU | Use Export Script |
Facial-Landmark-Detection | float | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | TFLITE | 0.28 ms | 0 - 96 MB | NPU | Facial-Landmark-Detection.tflite |
Facial-Landmark-Detection | float | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | QNN | 0.282 ms | 0 - 2 MB | NPU | Use Export Script |
Facial-Landmark-Detection | float | SA8295P ADP | Qualcomm® SA8295P | TFLITE | 0.66 ms | 0 - 18 MB | NPU | Facial-Landmark-Detection.tflite |
Facial-Landmark-Detection | float | SA8295P ADP | Qualcomm® SA8295P | QNN | 0.624 ms | 0 - 18 MB | NPU | Use Export Script |
Facial-Landmark-Detection | float | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | TFLITE | 0.287 ms | 0 - 97 MB | NPU | Facial-Landmark-Detection.tflite |
Facial-Landmark-Detection | float | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | QNN | 0.284 ms | 0 - 2 MB | NPU | Use Export Script |
Facial-Landmark-Detection | float | SA8775P ADP | Qualcomm® SA8775P | TFLITE | 0.518 ms | 0 - 16 MB | NPU | Facial-Landmark-Detection.tflite |
Facial-Landmark-Detection | float | SA8775P ADP | Qualcomm® SA8775P | QNN | 0.497 ms | 0 - 14 MB | NPU | Use Export Script |
Facial-Landmark-Detection | float | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | TFLITE | 0.279 ms | 0 - 95 MB | NPU | Facial-Landmark-Detection.tflite |
Facial-Landmark-Detection | float | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | QNN | 0.277 ms | 0 - 27 MB | NPU | Use Export Script |
Facial-Landmark-Detection | float | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | ONNX | 0.391 ms | 0 - 45 MB | NPU | Facial-Landmark-Detection.onnx |
Facial-Landmark-Detection | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | TFLITE | 0.223 ms | 0 - 34 MB | NPU | Facial-Landmark-Detection.tflite |
Facial-Landmark-Detection | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | QNN | 0.217 ms | 0 - 19 MB | NPU | Use Export Script |
Facial-Landmark-Detection | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | ONNX | 0.305 ms | 0 - 21 MB | NPU | Facial-Landmark-Detection.onnx |
Facial-Landmark-Detection | float | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | TFLITE | 0.21 ms | 0 - 15 MB | NPU | Facial-Landmark-Detection.tflite |
Facial-Landmark-Detection | float | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | QNN | 0.195 ms | 0 - 16 MB | NPU | Use Export Script |
Facial-Landmark-Detection | float | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | ONNX | 0.286 ms | 0 - 18 MB | NPU | Facial-Landmark-Detection.onnx |
Facial-Landmark-Detection | float | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN | 0.322 ms | 0 - 0 MB | NPU | Use Export Script |
Facial-Landmark-Detection | float | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 0.36 ms | 12 - 12 MB | NPU | Facial-Landmark-Detection.onnx |
Facial-Landmark-Detection | w8a8 | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | TFLITE | 0.463 ms | 0 - 11 MB | NPU | Facial-Landmark-Detection.tflite |
Facial-Landmark-Detection | w8a8 | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | QNN | 0.444 ms | 0 - 10 MB | NPU | Use Export Script |
Facial-Landmark-Detection | w8a8 | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | TFLITE | 0.278 ms | 0 - 28 MB | NPU | Facial-Landmark-Detection.tflite |
Facial-Landmark-Detection | w8a8 | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | QNN | 0.303 ms | 0 - 27 MB | NPU | Use Export Script |
Facial-Landmark-Detection | w8a8 | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | TFLITE | 0.179 ms | 0 - 37 MB | NPU | Facial-Landmark-Detection.tflite |
Facial-Landmark-Detection | w8a8 | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | QNN | 0.161 ms | 0 - 3 MB | NPU | Use Export Script |
Facial-Landmark-Detection | w8a8 | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | TFLITE | 0.345 ms | 0 - 14 MB | NPU | Facial-Landmark-Detection.tflite |
Facial-Landmark-Detection | w8a8 | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | QNN | 0.321 ms | 0 - 15 MB | NPU | Use Export Script |
Facial-Landmark-Detection | w8a8 | RB3 Gen 2 (Proxy) | Qualcomm® QCS6490 (Proxy) | TFLITE | 0.528 ms | 0 - 24 MB | NPU | Facial-Landmark-Detection.tflite |
Facial-Landmark-Detection | w8a8 | RB3 Gen 2 (Proxy) | Qualcomm® QCS6490 (Proxy) | QNN | 0.583 ms | 0 - 14 MB | NPU | Use Export Script |
Facial-Landmark-Detection | w8a8 | RB5 (Proxy) | Qualcomm® QCS8250 (Proxy) | TFLITE | 1.605 ms | 0 - 2 MB | NPU | Facial-Landmark-Detection.tflite |
Facial-Landmark-Detection | w8a8 | SA7255P ADP | Qualcomm® SA7255P | TFLITE | 0.463 ms | 0 - 11 MB | NPU | Facial-Landmark-Detection.tflite |
Facial-Landmark-Detection | w8a8 | SA7255P ADP | Qualcomm® SA7255P | QNN | 0.444 ms | 0 - 10 MB | NPU | Use Export Script |
Facial-Landmark-Detection | w8a8 | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | TFLITE | 0.167 ms | 0 - 36 MB | NPU | Facial-Landmark-Detection.tflite |
Facial-Landmark-Detection | w8a8 | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | QNN | 0.17 ms | 0 - 3 MB | NPU | Use Export Script |
Facial-Landmark-Detection | w8a8 | SA8295P ADP | Qualcomm® SA8295P | TFLITE | 0.465 ms | 0 - 16 MB | NPU | Facial-Landmark-Detection.tflite |
Facial-Landmark-Detection | w8a8 | SA8295P ADP | Qualcomm® SA8295P | QNN | 0.439 ms | 0 - 18 MB | NPU | Use Export Script |
Facial-Landmark-Detection | w8a8 | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | TFLITE | 0.175 ms | 0 - 37 MB | NPU | Facial-Landmark-Detection.tflite |
Facial-Landmark-Detection | w8a8 | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | QNN | 0.177 ms | 0 - 2 MB | NPU | Use Export Script |
Facial-Landmark-Detection | w8a8 | SA8775P ADP | Qualcomm® SA8775P | TFLITE | 0.345 ms | 0 - 14 MB | NPU | Facial-Landmark-Detection.tflite |
Facial-Landmark-Detection | w8a8 | SA8775P ADP | Qualcomm® SA8775P | QNN | 0.321 ms | 0 - 15 MB | NPU | Use Export Script |
Facial-Landmark-Detection | w8a8 | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | TFLITE | 0.164 ms | 0 - 37 MB | NPU | Facial-Landmark-Detection.tflite |
Facial-Landmark-Detection | w8a8 | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | QNN | 0.17 ms | 0 - 36 MB | NPU | Use Export Script |
Facial-Landmark-Detection | w8a8 | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | ONNX | 0.435 ms | 0 - 16 MB | NPU | Facial-Landmark-Detection.onnx |
Facial-Landmark-Detection | w8a8 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | TFLITE | 0.142 ms | 0 - 31 MB | NPU | Facial-Landmark-Detection.tflite |
Facial-Landmark-Detection | w8a8 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | QNN | 0.128 ms | 0 - 30 MB | NPU | Use Export Script |
Facial-Landmark-Detection | w8a8 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | ONNX | 0.349 ms | 0 - 33 MB | NPU | Facial-Landmark-Detection.onnx |
Facial-Landmark-Detection | w8a8 | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | TFLITE | 0.152 ms | 0 - 21 MB | NPU | Facial-Landmark-Detection.tflite |
Facial-Landmark-Detection | w8a8 | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | QNN | 0.134 ms | 0 - 15 MB | NPU | Use Export Script |
Facial-Landmark-Detection | w8a8 | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | ONNX | 0.385 ms | 0 - 21 MB | NPU | Facial-Landmark-Detection.onnx |
Facial-Landmark-Detection | w8a8 | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN | 0.215 ms | 1 - 1 MB | NPU | Use Export Script |
Facial-Landmark-Detection | w8a8 | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 0.458 ms | 4 - 4 MB | NPU | Facial-Landmark-Detection.onnx |
Installation
Install the package via pip:
pip install "qai-hub-models[facemap-3dmm]"
Configure Qualcomm® AI Hub to run this model on a cloud-hosted device
Sign-in to Qualcomm® AI Hub with your
Qualcomm® ID. Once signed in navigate to Account -> Settings -> API Token
.
With this API token, you can configure your client to run models on the cloud hosted devices.
qai-hub configure --api_token API_TOKEN
Navigate to docs for more information.
Demo off target
The package contains a simple end-to-end demo that downloads pre-trained weights and runs this model on a sample input.
python -m qai_hub_models.models.facemap_3dmm.demo
The above demo runs a reference implementation of pre-processing, model inference, and post processing.
NOTE: If you want running in a Jupyter Notebook or Google Colab like environment, please add the following to your cell (instead of the above).
%run -m qai_hub_models.models.facemap_3dmm.demo
Run model on a cloud-hosted device
In addition to the demo, you can also run the model on a cloud-hosted Qualcomm® device. This script does the following:
- Performance check on-device on a cloud-hosted device
- Downloads compiled assets that can be deployed on-device for Android.
- Accuracy check between PyTorch and on-device outputs.
python -m qai_hub_models.models.facemap_3dmm.export
Profiling Results
------------------------------------------------------------
Facial-Landmark-Detection
Device : cs_8275 (ANDROID 14)
Runtime : TFLITE
Estimated inference time (ms) : 1.2
Estimated peak memory usage (MB): [0, 12]
Total # Ops : 37
Compute Unit(s) : npu (37 ops) gpu (0 ops) cpu (0 ops)
How does this work?
This export script leverages Qualcomm® AI Hub to optimize, validate, and deploy this model on-device. Lets go through each step below in detail:
Step 1: Compile model for on-device deployment
To compile a PyTorch model for on-device deployment, we first trace the model
in memory using the jit.trace
and then call the submit_compile_job
API.
import torch
import qai_hub as hub
from qai_hub_models.models.facemap_3dmm import Model
# Load the model
torch_model = Model.from_pretrained()
# Device
device = hub.Device("Samsung Galaxy S24")
# Trace model
input_shape = torch_model.get_input_spec()
sample_inputs = torch_model.sample_inputs()
pt_model = torch.jit.trace(torch_model, [torch.tensor(data[0]) for _, data in sample_inputs.items()])
# Compile model on a specific device
compile_job = hub.submit_compile_job(
model=pt_model,
device=device,
input_specs=torch_model.get_input_spec(),
)
# Get target model to run on-device
target_model = compile_job.get_target_model()
Step 2: Performance profiling on cloud-hosted device
After compiling models from step 1. Models can be profiled model on-device using the
target_model
. Note that this scripts runs the model on a device automatically
provisioned in the cloud. Once the job is submitted, you can navigate to a
provided job URL to view a variety of on-device performance metrics.
profile_job = hub.submit_profile_job(
model=target_model,
device=device,
)
Step 3: Verify on-device accuracy
To verify the accuracy of the model on-device, you can run on-device inference on sample input data on the same cloud hosted device.
input_data = torch_model.sample_inputs()
inference_job = hub.submit_inference_job(
model=target_model,
device=device,
inputs=input_data,
)
on_device_output = inference_job.download_output_data()
With the output of the model, you can compute like PSNR, relative errors or spot check the output with expected output.
Note: This on-device profiling and inference requires access to Qualcomm® AI Hub. Sign up for access.
Run demo on a cloud-hosted device
You can also run the demo on-device.
python -m qai_hub_models.models.facemap_3dmm.demo --on-device
NOTE: If you want running in a Jupyter Notebook or Google Colab like environment, please add the following to your cell (instead of the above).
%run -m qai_hub_models.models.facemap_3dmm.demo -- --on-device
Deploying compiled model to Android
The models can be deployed using multiple runtimes:
TensorFlow Lite (
.tflite
export): This tutorial provides a guide to deploy the .tflite model in an Android application.QNN (
.so
export ): This sample app provides instructions on how to use the.so
shared library in an Android application.
View on Qualcomm® AI Hub
Get more details on Facial-Landmark-Detection's performance across various devices here. Explore all available models on Qualcomm® AI Hub
License
- The license for the original implementation of Facial-Landmark-Detection can be found here.
- The license for the compiled assets for on-device deployment can be found here
References
Community
- Join our AI Hub Slack community to collaborate, post questions and learn more about on-device AI.
- For questions or feedback please reach out to us.