poltextlab's picture
trunc+maxlen
2673386 verified
---
license: mit
language:
- multilingual
tags:
- zero-shot-classification
- text-classification
- pytorch
metrics:
- accuracy
- f1-score
extra_gated_prompt: Our models are intended for academic use only. If you are not
affiliated with an academic institution, please provide a rationale for using our
models. Please allow us a few business days to manually review subscriptions.
extra_gated_fields:
Name: text
Country: country
Institution: text
Institution Email: text
Please specify your academic use case: text
---
# xlm-roberta-large-pooled-cap-minor-v3
## Model description
An `xlm-roberta-large` model finetuned on multilingual (english, danish, hungarian) training data labelled with [minor topic codes](https://www.comparativeagendas.net/pages/master-codebook) from the [Comparative Agendas Project](https://www.comparativeagendas.net/).
## How to use the model
```python
from transformers import AutoTokenizer, pipeline
tokenizer = AutoTokenizer.from_pretrained("xlm-roberta-large")
pipe = pipeline(
model="poltextlab/xlm-roberta-large-pooled-cap-minor-v3",
task="text-classification",
tokenizer=tokenizer,
use_fast=False,
truncation=True,
max_length=512,
token="<your_hf_read_only_token>"
)
text = "We will place an immediate 6-month halt on the finance driven closure of beds and wards, and set up an independent audit of needs and facilities."
pipe(text)
```
### Gated access
Due to the gated access, you must pass the `token` parameter when loading the model. In earlier versions of the Transformers package, you may need to use the `use_auth_token` parameter instead.
## Model performance
The model was evaluated on a test set of 15 349 english examples (20% of the english data).<br>
* Accuracy: **0.87**.
* Weighted Average F1-score: **0.86**
## Inference platform
This model is used by the [CAP Babel Machine](https://babel.poltextlab.com), an open-source and free natural language processing tool, designed to simplify and speed up projects for comparative research.
## Cooperation
Model performance can be significantly improved by extending our training sets. We appreciate every submission of CAP-coded corpora (of any domain and language) at poltextlab{at}poltextlab{dot}com or by using the [CAP Babel Machine](https://babel.poltextlab.com).
## Debugging and issues
This architecture uses the `sentencepiece` tokenizer. In order to run the model before `transformers==4.27` you need to install it manually.
If you encounter a `RuntimeError` when loading the model using the `from_pretrained()` method, adding `ignore_mismatched_sizes=True` should solve the issue.