SentenceTransformer
This is a sentence-transformers model trained. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Maximum Sequence Length: 256 tokens
- Output Dimensionality: 384 dimensions
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the ๐ค Hub
model = SentenceTransformer("pankajrajdeo/BioForge-bioformer-16L-clinical-trials")
# Run inference
sentences = [
'Gaucher Disease',
'OTHER: Digital Engagement Application (GD App)|OTHER: No Intervention',
'Pregnancy Complications|Gestational Diabetes|Obstetric Labor Complications|Neurodevelopmental Disorders|Childhood Obesity',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Information Retrieval
- Dataset:
ct-pubmed-clean-eval
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.6569 |
cosine_accuracy@3 | 0.7522 |
cosine_accuracy@5 | 0.7922 |
cosine_accuracy@10 | 0.8405 |
cosine_precision@1 | 0.6569 |
cosine_precision@3 | 0.2827 |
cosine_precision@5 | 0.1858 |
cosine_precision@10 | 0.1034 |
cosine_recall@1 | 0.543 |
cosine_recall@3 | 0.6531 |
cosine_recall@5 | 0.6999 |
cosine_recall@10 | 0.7596 |
cosine_ndcg@10 | 0.6889 |
cosine_mrr@10 | 0.7148 |
cosine_map@100 | 0.6492 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 3,977,498 training samples
- Columns:
anchor
andpositive
- Approximate statistics based on the first 1000 samples:
anchor positive type string string details - min: 3 tokens
- mean: 31.98 tokens
- max: 75 tokens
- min: 3 tokens
- mean: 30.28 tokens
- max: 102 tokens
- Samples:
anchor positive Kinesiotape for Edema After Bilateral Total Knee Arthroplasty
The purpose of this study is to determine if kinesiotaping for edema management will decrease post-operative edema in patients with bilateral total knee arthroplasty. The leg receiving kinesiotaping during inpatient rehabilitation may have decreased edema
Kinesiotape for Edema After Bilateral Total Knee Arthroplasty
Arthroplasty Complications
The purpose of this study is to determine if kinesiotaping for edema management will decrease post-operative edema in patients with bilateral total knee arthroplasty. The leg receiving kinesiotaping during inpatient rehabilitation may have decreased edema
Change from baseline and during 1-2-day time intervals of circumferences of both knees and lower extremities, Bilateral circumferences, in centimeters, at the following points: 10 cm above the superior pole of the patella; middle of the knee joint; calf ci
- Loss:
CachedMultipleNegativesRankingLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 512learning_rate
: 2e-05lr_scheduler_type
: cosinewarmup_ratio
: 0.05bf16
: Truedataloader_num_workers
: 16load_best_model_at_end
: Truegradient_checkpointing
: True
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 512per_device_eval_batch_size
: 8per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 2e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 3max_steps
: -1lr_scheduler_type
: cosinelr_scheduler_kwargs
: {}warmup_ratio
: 0.05warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Truefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 16dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Trueignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsehub_revision
: Nonegradient_checkpointing
: Truegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseliger_kernel_config
: Noneeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: proportional
Training Logs
Click to expand
Epoch | Step | Training Loss | ct-pubmed-clean-eval_cosine_ndcg@10 |
---|---|---|---|
0.0129 | 100 | 2.2196 | - |
0.0257 | 200 | 1.7937 | - |
0.0386 | 300 | 1.5607 | - |
0.0515 | 400 | 1.4738 | - |
0.0644 | 500 | 1.4141 | - |
0.0772 | 600 | 1.3807 | - |
0.0901 | 700 | 1.3341 | - |
0.1030 | 800 | 1.3077 | - |
0.1158 | 900 | 1.3093 | - |
0.1287 | 1000 | 1.2638 | - |
0.1416 | 1100 | 1.2509 | - |
0.1545 | 1200 | 1.2333 | - |
0.1673 | 1300 | 1.2375 | - |
0.1802 | 1400 | 1.2022 | - |
0.1931 | 1500 | 1.1917 | - |
0.2059 | 1600 | 1.1853 | - |
0.2188 | 1700 | 1.1842 | - |
0.2317 | 1800 | 1.1748 | - |
0.2446 | 1900 | 1.1735 | - |
0.2574 | 2000 | 1.1457 | - |
0.2703 | 2100 | 1.1445 | - |
0.2832 | 2200 | 1.1448 | - |
0.2960 | 2300 | 1.1313 | - |
0.3089 | 2400 | 1.1301 | - |
0.3218 | 2500 | 1.1281 | - |
0.3347 | 2600 | 1.1139 | - |
0.3475 | 2700 | 1.1062 | - |
0.3604 | 2800 | 1.0989 | - |
0.3733 | 2900 | 1.1147 | - |
0.3862 | 3000 | 1.106 | - |
0.3990 | 3100 | 1.1074 | - |
0.4119 | 3200 | 1.0853 | - |
0.4248 | 3300 | 1.0918 | - |
0.4376 | 3400 | 1.0857 | - |
0.4505 | 3500 | 1.0774 | - |
0.4634 | 3600 | 1.0744 | - |
0.4763 | 3700 | 1.0799 | - |
0.4891 | 3800 | 1.0791 | - |
0.4999 | 3884 | - | 0.6628 |
0.5020 | 3900 | 1.077 | - |
0.5149 | 4000 | 1.0531 | - |
0.5277 | 4100 | 1.0449 | - |
0.5406 | 4200 | 1.0544 | - |
0.5535 | 4300 | 1.0496 | - |
0.5664 | 4400 | 1.0508 | - |
0.5792 | 4500 | 1.0649 | - |
0.5921 | 4600 | 1.0633 | - |
0.6050 | 4700 | 1.0576 | - |
0.6178 | 4800 | 1.0398 | - |
0.6307 | 4900 | 1.0311 | - |
0.6436 | 5000 | 1.0558 | - |
0.6565 | 5100 | 1.0355 | - |
0.6693 | 5200 | 1.0221 | - |
0.6822 | 5300 | 1.0188 | - |
0.6951 | 5400 | 1.0266 | - |
0.7079 | 5500 | 1.0254 | - |
0.7208 | 5600 | 1.0229 | - |
0.7337 | 5700 | 1.0199 | - |
0.7466 | 5800 | 1.0187 | - |
0.7594 | 5900 | 1.0143 | - |
0.7723 | 6000 | 1.0241 | - |
0.7852 | 6100 | 1.0174 | - |
0.7980 | 6200 | 1.0069 | - |
0.8109 | 6300 | 1.0008 | - |
0.8238 | 6400 | 1.0083 | - |
0.8367 | 6500 | 1.0047 | - |
0.8495 | 6600 | 1.0134 | - |
0.8624 | 6700 | 1.0021 | - |
0.8753 | 6800 | 0.9956 | - |
0.8881 | 6900 | 1.0 | - |
0.9010 | 7000 | 1.0098 | - |
0.9139 | 7100 | 0.9991 | - |
0.9268 | 7200 | 1.0003 | - |
0.9396 | 7300 | 0.965 | - |
0.9525 | 7400 | 0.9992 | - |
0.9654 | 7500 | 0.9889 | - |
0.9782 | 7600 | 0.9961 | - |
0.9911 | 7700 | 0.9912 | - |
0.9999 | 7768 | - | 0.6744 |
1.0040 | 7800 | 0.9734 | - |
1.0169 | 7900 | 0.9606 | - |
1.0297 | 8000 | 0.9552 | - |
1.0426 | 8100 | 0.953 | - |
1.0555 | 8200 | 0.9701 | - |
1.0683 | 8300 | 0.9603 | - |
1.0812 | 8400 | 0.9448 | - |
1.0941 | 8500 | 0.9332 | - |
1.1070 | 8600 | 0.9427 | - |
1.1198 | 8700 | 0.9512 | - |
1.1327 | 8800 | 0.9441 | - |
1.1456 | 8900 | 0.9509 | - |
1.1585 | 9000 | 0.9568 | - |
1.1713 | 9100 | 0.9473 | - |
1.1842 | 9200 | 0.9434 | - |
1.1971 | 9300 | 0.9329 | - |
1.2099 | 9400 | 0.932 | - |
1.2228 | 9500 | 0.9513 | - |
1.2357 | 9600 | 0.9476 | - |
1.2486 | 9700 | 0.933 | - |
1.2614 | 9800 | 0.9243 | - |
1.2743 | 9900 | 0.9422 | - |
1.2872 | 10000 | 0.9249 | - |
1.3000 | 10100 | 0.9297 | - |
1.3129 | 10200 | 0.9285 | - |
1.3258 | 10300 | 0.9364 | - |
1.3387 | 10400 | 0.9339 | - |
1.3515 | 10500 | 0.9395 | - |
1.3644 | 10600 | 0.9365 | - |
1.3773 | 10700 | 0.9223 | - |
1.3901 | 10800 | 0.926 | - |
1.4030 | 10900 | 0.925 | - |
1.4159 | 11000 | 0.9373 | - |
1.4288 | 11100 | 0.9304 | - |
1.4416 | 11200 | 0.9251 | - |
1.4545 | 11300 | 0.9315 | - |
1.4674 | 11400 | 0.9301 | - |
1.4802 | 11500 | 0.9292 | - |
1.4931 | 11600 | 0.9187 | - |
1.4998 | 11652 | - | 0.6844 |
1.5060 | 11700 | 0.9195 | - |
1.5189 | 11800 | 0.9251 | - |
1.5317 | 11900 | 0.9292 | - |
1.5446 | 12000 | 0.913 | - |
1.5575 | 12100 | 0.9262 | - |
1.5703 | 12200 | 0.9199 | - |
1.5832 | 12300 | 0.9216 | - |
1.5961 | 12400 | 0.9307 | - |
1.6090 | 12500 | 0.9257 | - |
1.6218 | 12600 | 0.9242 | - |
1.6347 | 12700 | 0.9225 | - |
1.6476 | 12800 | 0.9155 | - |
1.6604 | 12900 | 0.9175 | - |
1.6733 | 13000 | 0.9114 | - |
1.6862 | 13100 | 0.9201 | - |
1.6991 | 13200 | 0.9233 | - |
1.7119 | 13300 | 0.9129 | - |
1.7248 | 13400 | 0.9192 | - |
1.7377 | 13500 | 0.9042 | - |
1.7505 | 13600 | 0.9048 | - |
1.7634 | 13700 | 0.9116 | - |
1.7763 | 13800 | 0.9119 | - |
1.7892 | 13900 | 0.9095 | - |
1.8020 | 14000 | 0.909 | - |
1.8149 | 14100 | 0.9091 | - |
1.8278 | 14200 | 0.902 | - |
1.8406 | 14300 | 0.8988 | - |
1.8535 | 14400 | 0.9025 | - |
1.8664 | 14500 | 0.9031 | - |
1.8793 | 14600 | 0.9221 | - |
1.8921 | 14700 | 0.9022 | - |
1.9050 | 14800 | 0.9081 | - |
1.9179 | 14900 | 0.9051 | - |
1.9308 | 15000 | 0.9006 | - |
1.9436 | 15100 | 0.9158 | - |
1.9565 | 15200 | 0.9077 | - |
1.9694 | 15300 | 0.8976 | - |
1.9822 | 15400 | 0.899 | - |
1.9951 | 15500 | 0.9096 | - |
1.9997 | 15536 | - | 0.6843 |
2.0080 | 15600 | 0.8844 | - |
2.0209 | 15700 | 0.8738 | - |
2.0337 | 15800 | 0.8896 | - |
2.0466 | 15900 | 0.8892 | - |
2.0595 | 16000 | 0.8805 | - |
2.0723 | 16100 | 0.8732 | - |
2.0852 | 16200 | 0.8821 | - |
2.0981 | 16300 | 0.8903 | - |
2.1110 | 16400 | 0.8901 | - |
2.1238 | 16500 | 0.8844 | - |
2.1367 | 16600 | 0.8887 | - |
2.1496 | 16700 | 0.871 | - |
2.1624 | 16800 | 0.8776 | - |
2.1753 | 16900 | 0.8754 | - |
2.1882 | 17000 | 0.8949 | - |
2.2011 | 17100 | 0.8835 | - |
2.2139 | 17200 | 0.8694 | - |
2.2268 | 17300 | 0.8773 | - |
2.2397 | 17400 | 0.8808 | - |
2.2525 | 17500 | 0.8908 | - |
2.2654 | 17600 | 0.8854 | - |
2.2783 | 17700 | 0.8813 | - |
2.2912 | 17800 | 0.8813 | - |
2.3040 | 17900 | 0.8805 | - |
2.3169 | 18000 | 0.8666 | - |
2.3298 | 18100 | 0.8851 | - |
2.3426 | 18200 | 0.8719 | - |
2.3555 | 18300 | 0.8819 | - |
2.3684 | 18400 | 0.8695 | - |
2.3813 | 18500 | 0.8778 | - |
2.3941 | 18600 | 0.8673 | - |
2.4070 | 18700 | 0.8868 | - |
2.4199 | 18800 | 0.886 | - |
2.4327 | 18900 | 0.882 | - |
2.4456 | 19000 | 0.8701 | - |
2.4585 | 19100 | 0.874 | - |
2.4714 | 19200 | 0.8681 | - |
2.4842 | 19300 | 0.886 | - |
2.4971 | 19400 | 0.882 | - |
2.4997 | 19420 | - | 0.6884 |
2.5100 | 19500 | 0.8837 | - |
2.5228 | 19600 | 0.8765 | - |
2.5357 | 19700 | 0.8771 | - |
2.5486 | 19800 | 0.8727 | - |
2.5615 | 19900 | 0.8735 | - |
2.5743 | 20000 | 0.8765 | - |
2.5872 | 20100 | 0.8701 | - |
2.6001 | 20200 | 0.8804 | - |
2.6129 | 20300 | 0.8785 | - |
2.6258 | 20400 | 0.8719 | - |
2.6387 | 20500 | 0.8758 | - |
2.6516 | 20600 | 0.8868 | - |
2.6644 | 20700 | 0.8684 | - |
2.6773 | 20800 | 0.8636 | - |
2.6902 | 20900 | 0.8942 | - |
2.7031 | 21000 | 0.8726 | - |
2.7159 | 21100 | 0.8704 | - |
2.7288 | 21200 | 0.8728 | - |
2.7417 | 21300 | 0.8708 | - |
2.7545 | 21400 | 0.8654 | - |
2.7674 | 21500 | 0.8599 | - |
2.7803 | 21600 | 0.8714 | - |
2.7932 | 21700 | 0.8753 | - |
2.8060 | 21800 | 0.8793 | - |
2.8189 | 21900 | 0.8787 | - |
2.8318 | 22000 | 0.8797 | - |
2.8446 | 22100 | 0.876 | - |
2.8575 | 22200 | 0.8732 | - |
2.8704 | 22300 | 0.8687 | - |
2.8833 | 22400 | 0.871 | - |
2.8961 | 22500 | 0.8796 | - |
2.9090 | 22600 | 0.8812 | - |
2.9219 | 22700 | 0.8659 | - |
2.9347 | 22800 | 0.8625 | - |
2.9476 | 22900 | 0.8755 | - |
2.9605 | 23000 | 0.8767 | - |
2.9734 | 23100 | 0.8658 | - |
2.9862 | 23200 | 0.8751 | - |
2.9991 | 23300 | 0.8774 | - |
2.9996 | 23304 | - | 0.6889 |
Framework Versions
- Python: 3.11.11
- Sentence Transformers: 3.4.1
- Transformers: 4.53.2
- PyTorch: 2.6.0+cu124
- Accelerate: 1.5.2
- Datasets: 3.2.0
- Tokenizers: 0.21.0
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
CachedMultipleNegativesRankingLoss
@misc{gao2021scaling,
title={Scaling Deep Contrastive Learning Batch Size under Memory Limited Setup},
author={Luyu Gao and Yunyi Zhang and Jiawei Han and Jamie Callan},
year={2021},
eprint={2101.06983},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
- Downloads last month
- 6
Evaluation results
- Cosine Accuracy@1 on ct pubmed clean evalself-reported0.657
- Cosine Accuracy@3 on ct pubmed clean evalself-reported0.752
- Cosine Accuracy@5 on ct pubmed clean evalself-reported0.792
- Cosine Accuracy@10 on ct pubmed clean evalself-reported0.840
- Cosine Precision@1 on ct pubmed clean evalself-reported0.657
- Cosine Precision@3 on ct pubmed clean evalself-reported0.283
- Cosine Precision@5 on ct pubmed clean evalself-reported0.186
- Cosine Precision@10 on ct pubmed clean evalself-reported0.103
- Cosine Recall@1 on ct pubmed clean evalself-reported0.543
- Cosine Recall@3 on ct pubmed clean evalself-reported0.653