Notebooks-explorers

community
Activity Feed

AI & ML interests

Request to join this organization to beta-test notebooks on Hugging Face!

Recent Activity

notebooks-explorers's activity

merve 
posted an update 2 days ago
view post
Post
4271
A ton of impactful models and datasets in open AI past week, let's summarize the best 🤩 merve/releases-apr-21-and-may-2-6819dcc84da4190620f448a3

💬 Qwen made it rain! They released Qwen3: new dense and MoE models ranging from 0.6B to 235B 🤯 as well as Qwen2.5-Omni, any-to-any model in 3B and 7B!
> Microsoft AI released Phi4 reasoning models (that also come in mini and plus sizes)
> NVIDIA released new CoT reasoning datasets
🖼️ > ByteDance released UI-TARS-1.5, native multimodal UI parsing agentic model
> Meta released EdgeTAM, an on-device object tracking model (SAM2 variant)
🗣️ NVIDIA released parakeet-tdt-0.6b-v2, a smol 600M automatic speech recognition model
> Nari released Dia, a 1.6B text-to-speech model
> Moonshot AI released Kimi Audio, a new audio understanding, generation, conversation model
👩🏻‍💻 JetBrains released Melium models in base and SFT for coding
> Tesslate released UIGEN-T2-7B, a new text-to-frontend-code model 🤩
merve 
posted an update 3 days ago
view post
Post
5997
A real-time object detector much faster and accurate than YOLO with Apache 2.0 license just landed to Hugging Face transformers 🔥

D-FINE is the sota real-time object detector that runs on T4 (free Colab) 🤩

> Collection with all checkpoints and demo ustc-community/d-fine-68109b427cbe6ee36b4e7352

Notebooks:
> Tracking https://github.com/qubvel/transformers-notebooks/blob/main/notebooks/DFine_tracking.ipynb
> Inference https://github.com/qubvel/transformers-notebooks/blob/main/notebooks/DFine_inference.ipynb
> Fine-tuning https://github.com/qubvel/transformers-notebooks/blob/main/notebooks/DFine_finetune_on_a_custom_dataset.ipynb
h/t @vladislavbro @qubvel-hf @ariG23498 and the authors of the paper 🎩

Regular object detectors attempt to predict bounding boxes in (x, y, w, h) pixel perfect coordinates, which is very rigid and hard to solve 🥲☹️



D-FINE formulates object detection as a distribution for bounding box coordinates, refines them iteratively, and it's more accurate 🤩

Another core idea behind this model is Global Optimal Localization Self-Distillation ⤵️

this model uses final layer's distribution output (sort of like a teacher) to distill to earlier layers to make early layers more performant.

  • 2 replies
·
mrfakename 
posted an update 6 days ago
view post
Post
1923
Hi everyone,

I just launched TTS Arena V2 - a platform for benchmarking TTS models by blind A/B testing. The goal is to make it easy to compare quality between open-source and commercial models, including conversational ones.

What's new in V2:

- **Conversational Arena**: Evaluate models like CSM-1B, Dia 1.6B, and PlayDialog in multi-turn settings
- **Personal Leaderboard**: Optional login to see which models you tend to prefer
- **Multi-speaker TTS**: Random voices per generation to reduce speaker bias
- **Performance Upgrade**: Rebuilt from Gradio → Flask. Much faster with fewer failed generations.
- **Keyboard Shortcuts**: Vote entirely via keyboard

Also added models like MegaTTS 3, Cartesia Sonic, and ElevenLabs' full lineup.

I'd love any feedback, feature suggestions, or ideas for models to include.

TTS-AGI/TTS-Arena-V2
  • 1 reply
·
merve 
posted an update 6 days ago
merve 
posted an update 9 days ago
view post
Post
2554
Meta released Llama Guard 4 and new Prompt Guard 2 models 🔥

Llama Guard 4 is a new model to filter model inputs/outputs both text-only and image 🛡️ use it before and after LLMs/VLMs! meta-llama/Llama-Guard-4-12B

Prompt Guard 2 22M & 86M are smol models to prevent model jailbreaks and prompt injections ⚔ meta-llama/Llama-Prompt-Guard-2-22M meta-llama/Llama-Guard-4-12B
Both come with new release of transformers 🤗

Try the model right away 👉🏻https://github.com/huggingface/huggingface-llama-recipes/blob/main/llama_guard_4.ipynb

Read our blog to learn more and easily get started 👉🏻 https://huggingface.co/blog/llama-guard-4 🦙
  • 1 reply
·
julien-c 
posted an update 13 days ago
view post
Post
4024
BOOOOM: Today I'm dropping TINY AGENTS

the 50 lines of code Agent in Javascript 🔥

I spent the last few weeks working on this, so I hope you will like it.

I've been diving into MCP (Model Context Protocol) to understand what the hype was all about.

It is fairly simple, but still quite powerful: MCP is a standard API to expose sets of Tools that can be hooked to LLMs.

But while doing that, came my second realization:

Once you have a MCP Client, an Agent is literally just a while loop on top of it. 🤯

➡️ read it exclusively on the official HF blog: https://huggingface.co/blog/tiny-agents
  • 1 reply
·
merve 
posted an update 13 days ago
view post
Post
3944
Don't sleep on new AI at Meta Vision-Language release! 🔥

facebook/perception-encoder-67f977c9a65ca5895a7f6ba1
facebook/perception-lm-67f9783f171948c383ee7498

Meta dropped swiss army knives for vision with A2.0 license 👏
> image/video encoders for vision language modelling and spatial understanding (object detection etc) 👏
> The vision LM outperforms InternVL3 and Qwen2.5VL 👏
> They also release gigantic video and image datasets

The authors attempt to come up with single versatile vision encoder to align on diverse set of tasks.

They trained Perception Encoder (PE) Core: a new state-of-the-art family of vision encoders that can be aligned for both vision-language and spatial tasks. For zero-shot image tasks, it outperforms latest sota SigLIP2 👏



> Among fine-tuned ones, first one is PE-Spatial. It's a model to detect bounding boxes, segmentation, depth estimation and it outperforms all other models 😮



> Second one is PLM, Perception Language Model, where they combine PE-Core with Qwen2.5 LM 7B. it outperforms all other models (including InternVL3 which was trained with Qwen2.5LM too!)

The authors release the following checkpoints in sizes base, large and giant:

> 3 PE-Core checkpoints (224, 336, 448)
> 2 PE-Lang checkpoints (L, G)
> One PE-Spatial (G, 448)
> 3 PLM (1B, 3B, 8B)
> Datasets



Authors release following datasets 📑
> PE Video: Gigantic video datasete of 1M videos with 120k expert annotations ⏯️
> PLM-Video and PLM-Image: Human and auto-annotated image and video datasets on region-based tasks
> PLM-VideoBench: New video benchmark on MCQA
  • 2 replies
·
merve 
posted an update 16 days ago
view post
Post
3372
New foundation model on image and video captioning just dropped by NVIDIA AI 🔥

Describe Anything Model (DAM) is a 3B vision language model to generate detailed captions with localized references 😮

The team released the models, the dataset, a new benchmark and a demo 🤩 nvidia/describe-anything-680825bb8f5e41ff0785834c

Most of the vision LMs focus on image as a whole, lacking localized references in captions, and not taking in visual prompts (points, boxes, drawings around objects)

DAM addresses this on two levels: new vision backbone that takes in focal crops and the image itself, and a large scale dataset 👀

They generate a dataset by extending existing segmentation and referring expression generation datasets like REFCOCO, by passing in the images and classes to VLMs and generating captions.

Lastly, they also release a new benchmark again with self-supervision, they use an LLM to evaluate the detailed captions focusing on localization 👏
davanstrien 
posted an update 16 days ago
view post
Post
1960
Came across a very nice submission from @marcodsn for the reasoning datasets competition (https://huggingface.co/blog/bespokelabs/reasoning-datasets-competition).

The dataset distils reasoning chains from arXiv research papers in biology and economics. Some nice features of the dataset:

- Extracts both the logical structure AND researcher intuition from academic papers
- Adopts the persona of researchers "before experiments" to capture exploratory thinking
- Provides multi-short and single-long reasoning formats with token budgets - Shows 7.2% improvement on MMLU-Pro Economics when fine-tuning a 3B model

It's created using the Curator framework with plans to scale across more scientific domains and incorporate multi-modal reasoning with charts and mathematics.

I personally am very excited about datasets like this, which involve creativity in their creation and don't just rely on $$$ to produce a big dataset with little novelty.

Dataset can be found here: marcodsn/academic-chains (give it a like!)
merve 
posted an update 24 days ago
view post
Post
4438
sooo many open AI releases past week, let's summarize! 🤗
merve/april-11-releases-67fcd78be33d241c0977b9d2

multimodal
> Moonshot AI released Kimi VL Thinking, first working open-source multimodal reasoning model and Kimi VL Instruct, both 16B MoEs with 3B active params (OS)
> InternVL3 released based on Qwen2.5VL, 7 ckpts with various sizes (1B to 78B)

LLMs
> NVIDIA released Llama-3_1-Nemotron-Ultra-253B-v1 an LLM built on Llama 405B for reasoning, chat and tool use
> Agentica released DeepCoder-14B-Preview, fine-tuned version of DeepSeek-R1-Distilled-Qwen-14B on problem-test pairs, along with the compiled dataset
> Zyphra/ZR1-1.5B is a new small reasoning LLM built on R1-Distill-1.5B (OS)
> Skywork-OR1-32B-Preview is a new reasoning model by Skywork

Image Generation
> HiDream releases three new models, HiDream I1 Dev, I1 Full, and I1 fast for image generation (OS)

*OS ones have Apache 2.0 or MIT licenses
·
davanstrien 
posted an update 29 days ago
view post
Post
1662
I've created a v1 dataset ( davanstrien/reasoning-required) and model ( davanstrien/ModernBERT-based-Reasoning-Required) to help curate "wild text" data for generating reasoning examples beyond the usual code/math/science domains.

- I developed a "Reasoning Required" dataset with a 0-4 scoring system for reasoning complexity
- I used educational content from HuggingFaceFW/fineweb-edu, adding annotations for domains, reasoning types, and example questions

My approach enables a more efficient workflow: filter text with small models first, then use LLMs only on high-value content.

This significantly reduces computation costs while expanding reasoning dataset domain coverage.
mrfakename 
posted an update about 1 month ago
view post
Post
2771
Papla P1 from Papla Media is now available on the TTS Arena!

Try out Papla's new ultra-realistic TTS model + compare it with other leading models on the TTS Arena: TTS-AGI/TTS-Arena
chansung 
posted an update about 1 month ago
view post
Post
3594
simple guide on the recipe for GRPO on Open-R1 which is built on top of TRL

I think FastAPI wrapper of vLLM with WeightSyncWorker is pretty cool feature. Also, we have many predefined reward functions out of the box!
·
merve 
posted an update about 2 months ago
view post
Post
4146
So many open releases at Hugging Face past week 🤯 recapping all here ⤵️ merve/march-21-releases-67dbe10e185f199e656140ae

👀 Multimodal
> Mistral AI released a 24B vision LM, both base and instruction FT versions, sota 🔥 (OS)
> with IBM we released SmolDocling, a sota 256M document parser with Apache 2.0 license (OS)
> SpatialLM is a new vision LM that outputs 3D bounding boxes, comes with 0.5B (QwenVL based) and 1B (Llama based) variants
> SkyWork released SkyWork-R1V-38B, new vision reasoning model (OS)

💬 LLMs
> NVIDIA released new Nemotron models in 49B and 8B with their post-training dataset
> LG released EXAONE, new reasoning models in 2.4B, 7.8B and 32B
> Dataset: Glaive AI released a new reasoning dataset of 22M+ examples
> Dataset: NVIDIA released new helpfulness dataset HelpSteer3
> Dataset: OpenManusRL is a new agent dataset based on ReAct framework (OS)
> Open-R1 team released OlympicCoder, new competitive coder model in 7B and 32B
> Dataset: GeneralThought-430K is a new reasoning dataset (OS)

🖼️ Image Generation/Computer Vision
> Roboflow released RF-DETR, new real-time sota object detector (OS) 🔥
> YOLOE is a new real-time zero-shot object detector with text and visual prompts 🥹
> Stability AI released Stable Virtual Camera, a new novel view synthesis model
> Tencent released Hunyuan3D-2mini, new small and fast 3D asset generation model
> ByteDance released InfiniteYou, new realistic photo generation model
> StarVector is a new 8B model that generates svg from images
> FlexWorld is a new model that expands 3D views (OS)

🎤 Audio
> Sesame released CSM-1B new speech generation model (OS)

🤖 Robotics
> NVIDIA released GR00T, new robotics model for generalized reasoning and skills, along with the dataset

*OS ones have Apache 2.0 or MIT license
lbourdois 
posted an update about 2 months ago
view post
Post
2635
We introduce FAT5 (Flash Attention T5) ⚡

An implementation of T5 in PyTorch with UL2 objective optimized for GPGPU for both training and inference thanks to 13 different optimizations.
The main one is that we have designed a CUDA kernel to expand the Flash Attention by @tridao with RPE biases and supports other PE such as RoPE, ALiBi or FIRE.
The result kernel is 2 times faster than a SPDA implementation.
We also use Triton kernels to optimize certain parts of the architecture, such as the cross-entropy and RMSNorm layer.

The various kernels have been carefully built to be compatible with BF16 and torch.compile to go even faster and achieve efficient pretraining.

All other optimizations are described in a 📝 subsequent blog post available on @huggingface 🤗: CATIE-AQ/FAT5-report.

This methodology enabled us to efficiently pretrain as a proof of concept a FAT5 with 147M parameters in French in a reasonable time (1,461H for 419B tokens), with limited resources (1 A100 i.e. a computational budget of ~ €1,900) and a low carbon footprint (13.5kg eq CO2).

The model's weights are also available on Hugging Face: CATIE-AQ/FAT5-small.
Not very useful in practice, it's a PoC and not an instructed model (it's planned for later).

All the code is available on GitHub if you want to pretrain your own model in your own language or for a specific domain: https://github.com/catie-aq/flashT5

Ending by indicating that was a joint project with @BorisAlbar at hf.co/CATIE-AQ.
chansung 
posted an update about 2 months ago
view post
Post
2625
Mistral AI Small 3.1 24B is not only commercial free but also the best model in a single GPU deployment.

I packed up all the information you need to know in a single picture. Hope this helps! :)
  • 1 reply
·
mrfakename 
posted an update about 2 months ago