gg-tt

company
Activity Feed

AI & ML interests

None defined yet.

Recent Activity

gg-tt's activity

Xenova 
posted an update about 5 hours ago
danielhanchen 
posted an update 3 days ago
view post
Post
5429
🦥 Introducing Unsloth Dynamic v2.0 GGUFs!
Our v2.0 quants set new benchmarks on 5-shot MMLU and KL Divergence, meaning you can now run & fine-tune quantized LLMs while preserving as much accuracy as possible.

Llama 4: unsloth/Llama-4-Scout-17B-16E-Instruct-GGUF
DeepSeek-R1: unsloth/DeepSeek-R1-GGUF-UD
Gemma 3: unsloth/gemma-3-27b-it-GGUF

We made selective layer quantization much smarter. Instead of modifying only a subset of layers, we now dynamically quantize all layers so every layer has a different bit. Now, our dynamic method can be applied to all LLM architectures, not just MoE's.

Blog with Details: https://docs.unsloth.ai/basics/dynamic-v2.0

All our future GGUF uploads will leverage Dynamic 2.0 and our hand curated 300K–1.5M token calibration dataset to improve conversational chat performance.

For accurate benchmarking, we built an evaluation framework to match the reported 5-shot MMLU scores of Llama 4 and Gemma 3. This allowed apples-to-apples comparisons between full-precision vs. Dynamic v2.0, QAT and standard iMatrix quants.

Dynamic v2.0 aims to minimize the performance gap between full-precision models and their quantized counterparts.
philschmid 
posted an update 10 days ago
view post
Post
2221
Gemini 2.5 Flash is here! We excited launch our first hybrid reasoning Gemini model. In Flash 2.5 developer can turn thinking off.

**TL;DR:**
- 🧠 Controllable "Thinking" with thinking budget with up to 24k token
- 🌌 1 Million multimodal input context for text, image, video, audio, and pdf
- 🛠️ Function calling, structured output, google search & code execution.
- 🏦 $0.15 1M input tokens; $0.6 or $3.5 (thinking on) per million output tokens (thinking tokens are billed as output tokens)
- 💡 Knowledge cut of January 2025
- 🚀 Rate limits - Free 10 RPM 500 req/day
- 🏅Outperforms 2.0 Flash on every benchmark

Try it ⬇️
https://aistudio.google.com/prompts/new_chat?model=gemini-2.5-flash-preview-04-17
  • 1 reply
·
Xenova 
posted an update 12 days ago
view post
Post
2480
Reasoning models like o3 and o4-mini are advancing faster than ever, but imagine what will be possible when they can run locally in your browser! 🤯

Well, with 🤗 Transformers.js, you can do just that! Here's Zyphra's new ZR1 model running at over 100 tokens/second on WebGPU! ⚡️

Giving models access to browser APIs (like File System, Screen Capture, and more) could unlock an entirely new class of web experiences that are personalized, interactive, and run locally in a secure, sandboxed environment.

For now, try out the demo! 👇
webml-community/Zyphra-ZR1-WebGPU
  • 1 reply
·
tomaarsen 
posted an update 13 days ago
view post
Post
2672
I just released Sentence Transformers v4.1; featuring ONNX and OpenVINO backends for rerankers offering 2-3x speedups and improved hard negatives mining which helps prepare stronger training datasets. Details:

🏎️ ONNX, OpenVINO, Optimization, Quantization
- I've added ONNX and OpenVINO support with just one extra argument: "backend" when loading the CrossEncoder reranker, e.g.: CrossEncoder("cross-encoder/ms-marco-MiniLM-L6-v2", backend="onnx")
- The export_optimized_onnx_model, export_dynamic_quantized_onnx_model, and export_static_quantized_openvino_model functions now work with CrossEncoder rerankers, allowing you to optimize (e.g. fusions, gelu approximations, etc.) or quantize (int8 weights) rerankers.
- I've uploaded ~340 ONNX & OpenVINO models for all existing models under the cross-encoder Hugging Face organization. You can use these without having to export when loading.

⛏ Improved Hard Negatives Mining
- Added 'absolute_margin' and 'relative_margin' arguments to mine_hard_negatives.
- absolute_margin ensures that sim(query, negative) < sim(query, positive) - absolute_margin, i.e. an absolute margin between the negative & positive similarities.
- relative_margin ensures that sim(query, negative) < sim(query, positive) * (1 - relative_margin), i.e. a relative margin between the negative & positive similarities.
- Inspired by the excellent NV-Retriever paper from NVIDIA.

And several other small improvements. Check out the full release notes here: https://github.com/UKPLab/sentence-transformers/releases/tag/v4.1.0

With this release, I introduce near-feature parity between the SentenceTransformer embedding & CrossEncoder reranker models, which I've wanted to do for quite some time! With rerankers very strongly supported now, it's time to look forward to other useful architectures!

danielhanchen 
posted an update 21 days ago
danielhanchen 
posted an update 29 days ago