Nasjonalbiblioteket AI Lab

Enterprise
non-profit
Verified
Activity Feed

AI & ML interests

None defined yet.

Recent Activity

NbAiLab's activity

davanstrien 
posted an update 6 days ago
view post
Post
1828
Came across a very nice submission from @marcodsn for the reasoning datasets competition (https://huggingface.co/blog/bespokelabs/reasoning-datasets-competition).

The dataset distils reasoning chains from arXiv research papers in biology and economics. Some nice features of the dataset:

- Extracts both the logical structure AND researcher intuition from academic papers
- Adopts the persona of researchers "before experiments" to capture exploratory thinking
- Provides multi-short and single-long reasoning formats with token budgets - Shows 7.2% improvement on MMLU-Pro Economics when fine-tuning a 3B model

It's created using the Curator framework with plans to scale across more scientific domains and incorporate multi-modal reasoning with charts and mathematics.

I personally am very excited about datasets like this, which involve creativity in their creation and don't just rely on $$$ to produce a big dataset with little novelty.

Dataset can be found here: marcodsn/academic-chains (give it a like!)
davanstrien 
posted an update 20 days ago
view post
Post
1648
I've created a v1 dataset ( davanstrien/reasoning-required) and model ( davanstrien/ModernBERT-based-Reasoning-Required) to help curate "wild text" data for generating reasoning examples beyond the usual code/math/science domains.

- I developed a "Reasoning Required" dataset with a 0-4 scoring system for reasoning complexity
- I used educational content from HuggingFaceFW/fineweb-edu, adding annotations for domains, reasoning types, and example questions

My approach enables a more efficient workflow: filter text with small models first, then use LLMs only on high-value content.

This significantly reduces computation costs while expanding reasoning dataset domain coverage.
davanstrien 
published a Space about 1 month ago
davanstrien 
posted an update about 2 months ago
view post
Post
2930
📊 Introducing "Hugging Face Dataset Spotlight" 📊

I'm excited to share the first episode of our AI-generated podcast series focusing on nice datasets from the Hugging Face Hub!

This first episode explores mathematical reasoning datasets:

- SynthLabsAI/Big-Math-RL-Verified: Over 250,000 rigorously verified problems spanning multiple difficulty levels and mathematical domains
- open-r1/OpenR1-Math-220k: 220,000 math problems with multiple reasoning traces, verified for accuracy using Math Verify and Llama-3.3-70B models.
- facebook/natural_reasoning: 1.1 million general reasoning questions carefully deduplicated and decontaminated from existing benchmarks, showing superior scaling effects when training models like Llama3.1-8B-Instruct.

Plus a bonus segment on bespokelabs/bespoke-manim!

https://www.youtube.com/watch?v=-TgmRq45tW4
davanstrien 
posted an update 2 months ago
view post
Post
3680
Quick POC: Turn a Hugging Face dataset card into a short podcast introducing the dataset using all open models.

I think I'm the only weirdo who would enjoy listening to something like this though 😅

Here is an example for eth-nlped/stepverify
  • 2 replies
·
davanstrien 
posted an update 2 months ago
view post
Post
2644
Hacked together a way to log trl GRPO training completions to a 🤗 dataset repo. This allows you to:

- Track rewards from multiple reward functions
- Treat the completion and rewards from training as a "proper" dataset and do EDA
- Share results for open science

The implementation is super hacky, but I'm curious if people would find this useful.

To push completions to the Hub, you just need two extra parameters:

log_completions=True
log_completions_hub_repo='your-username/repo-name'

Example dataset: davanstrien/test-logs
Colab: https://colab.research.google.com/drive/1wzBFPVthRYYTp-mEYlznLg_e_0Za1M3g

davanstrien 
posted an update 2 months ago