Eagle-2

[📂 GitHub] [📜 Eagle2 Tech Report] [🤗 HF Demo]

News:

  • We update the model arch to eagle_2_5_vl to support generate feature.

Introduction

We are thrilled to release our latest Eagle2 series Vision-Language Model. Open-source Vision-Language Models (VLMs) have made significant strides in narrowing the gap with proprietary models. However, critical details about data strategies and implementation are often missing, limiting reproducibility and innovation. In this project, we focus on VLM post-training from a data-centric perspective, sharing insights into building effective data strategies from scratch. By combining these strategies with robust training recipes and model design, we introduce Eagle2, a family of performant VLMs. Our work aims to empower the open-source community to develop competitive VLMs with transparent processes.

In this repo, we are open-sourcing Eagle2-1B, a compact and efficient model designed for scenarios requiring fast inference and minimal computational resources, without compromising essential performance

Model Zoo

We provide the following models:

model name LLM Vision Max Length HF Link
Eagle2-1B Qwen2.5-0.5B-Instruct Siglip 16K 🤗 link
Eagle2-2B Qwen2.5-1.5B-Instruct Siglip 16K 🤗 link
Eagle2-9B Qwen2.5-7B-Instruct Siglip+ConvNext 16K 🤗 link

Benchmark Results

Benchmark LLaVa-One-Vision-0.5B InternVL2-1B InternVL2.5-1B Qwen2-VL-2B Eagle2-1B
DocVQAtest 70.0 81.7 84.8 90.1 81.8
ChartQAtest 61.4 72.9 75.9 73.0 77.0
InfoVQAtest 41.8 50.9 56.0 65.5 54.8
TextVQAval - 70.0 72.0 79.7 76.6
OCRBench 565 754 785 809 767
MMEsum 1438.0 1794.4 1950.5 1872.0 1790.2
RealWorldQA 55.6 50.3 57.5 62.6 55.4
AI2Dtest 57.1 64.1 69.3 74.7 70.9
MMMUval 31.4 36.7 40.9 41.1 38.8
MMVetGPT-4-Turbo 32.2 32.7 48.8 49.5 40.9
MathVistatestmini 33.8 37.7 43.2 43.0 45.3
MMstar 37.7 45.7 50.1 48.0 48.5

Quick Start

We provide a inference script to help you quickly start using the model. We support different input types:

  • pure text input
  • single image input
  • multiple image input
  • video input

Install the dependencies

pip install transformers
pip install flash-attn

single image

from PIL import Image
import requests
from transformers import AutoProcessor, AutoModel
import torch
model = AutoModel.from_pretrained("nvidia/Eagle2-1B",trust_remote_code=True, torch_dtype=torch.bfloat16)
processor = AutoProcessor.from_pretrained("nvidia/Eagle2-1B", trust_remote_code=True, use_fast=True)
processor.tokenizer.padding_side = "left"

messages = [
    {
        "role": "user",
        "content": [
            {
                "type": "image",
                "image": "https://www.ilankelman.org/stopsigns/australia.jpg",
            },
            {"type": "text", "text": "Describe this image."},
        ],
    }
]

text_list = [processor.apply_chat_template(
    messages, tokenize=False, add_generation_prompt=True
)]
image_inputs, video_inputs = processor.process_vision_info(messages)
inputs = processor(text = text_list, images=image_inputs, videos=video_inputs, return_tensors="pt", padding=True)
inputs = inputs.to("cuda")
model = model.to("cuda")
generated_ids = model.generate(**inputs, max_new_tokens=1024)
output_text = processor.batch_decode(
    generated_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False
)
print(output_text)

stream generation

from PIL import Image
import requests
from transformers import AutoProcessor, AutoModel, AutoTokenizer
import torch

from transformers import TextIteratorStreamer
import threading


model = AutoModel.from_pretrained("nvidia/Eagle2-1B",trust_remote_code=True, attn_implementation='flash_attention_2', torch_dtype=torch.bfloat16)
tokenizer = AutoTokenizer.from_pretrained("nvidia/Eagle2-1B", trust_remote_code=True, use_fast=True)
processor = AutoProcessor.from_pretrained("nvidia/Eagle2-1B", trust_remote_code=True, use_fast=True)
processor.tokenizer.padding_side = "left"

messages = [
    {
        "role": "user",
        "content": [
            {
                "type": "image",
                "image": "https://www.ilankelman.org/stopsigns/australia.jpg",
            },
            {"type": "text", "text": "Describe this image."},
        ],
    }
]

text_list = [processor.apply_chat_template(
    messages, tokenize=False, add_generation_prompt=True
)]
image_inputs, video_inputs = processor.process_vision_info(messages)
inputs = processor(text = text_list, images=image_inputs, videos=video_inputs, return_tensors="pt", padding=True)
inputs = inputs.to("cuda")
model = model.to("cuda")

streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)

generation_kwargs = dict(
    **inputs,
    streamer=streamer,
    max_new_tokens=1024,
    do_sample=True,
    top_p=0.95,
    temperature=0.8
)
thread = threading.Thread(target=model.generate, kwargs=generation_kwargs)
thread.start()


for new_text in streamer:
    print(new_text, end="", flush=True)

multiple-images

from PIL import Image
import requests
from transformers import AutoProcessor, AutoModel
import torch
model = AutoModel.from_pretrained("nvidia/Eagle2-1B",trust_remote_code=True, torch_dtype=torch.bfloat16)
processor = AutoProcessor.from_pretrained("nvidia/Eagle2-1B", trust_remote_code=True, use_fast=True)
processor.tokenizer.padding_side = "left"

messages = [
    {
        "role": "user",
        "content": [
            {
                "type": "image",
                "image": "https://www.ilankelman.org/stopsigns/australia.jpg",
            },
            {
                "type": "image",
                "image": "https://www.nvidia.com/content/dam/en-zz/Solutions/about-nvidia/logo-and-brand/01-nvidia-logo-vert-500x200-2c50-d@2x.png",
            },
            {"type": "text", "text": "Describe these two images."},
        ],
    }
]

text_list = [processor.apply_chat_template(
    messages, tokenize=False, add_generation_prompt=True
)]
image_inputs, video_inputs = processor.process_vision_info(messages)
inputs = processor(text = text_list, images=image_inputs, videos=video_inputs, return_tensors="pt", padding=True)
inputs = inputs.to("cuda")
model = model.to("cuda")
generated_ids = model.generate(**inputs, max_new_tokens=1024)
output_text = processor.batch_decode(
    generated_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False
)
print(output_text)

single video


from PIL import Image
import requests
from transformers import AutoProcessor, AutoModel
import torch
model = AutoModel.from_pretrained("nvidia/Eagle2-1B",trust_remote_code=True, torch_dtype=torch.bfloat16)
processor = AutoProcessor.from_pretrained("nvidia/Eagle2-1B", trust_remote_code=True, use_fast=True)
processor.tokenizer.padding_side = "left"

messages = [
    {
        "role": "user",
        "content": [
            {
                "type": "video",
                "video": "../Eagle2-8B/space_woaudio.mp4",
            },
            {"type": "text", "text": "Describe this video."},
        ],
    }
]

text_list = [processor.apply_chat_template(
    messages, tokenize=False, add_generation_prompt=True
)]
image_inputs, video_inputs, video_kwargs = processor.process_vision_info(messages, return_video_kwargs=True)

inputs = processor(text = text_list, images=image_inputs, videos=video_inputs, return_tensors="pt", padding=True, videos_kwargs=video_kwargs)
inputs = inputs.to("cuda")
model = model.to("cuda")
generated_ids = model.generate(**inputs, max_new_tokens=1024)
output_text = processor.batch_decode(
    generated_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False
)
print(output_text)

multieple videos

from PIL import Image
import requests
from transformers import AutoProcessor, AutoModel
import torch
model = AutoModel.from_pretrained("nvidia/Eagle2-1B",trust_remote_code=True, torch_dtype=torch.bfloat16)
processor = AutoProcessor.from_pretrained("nvidia/Eagle2-1B", trust_remote_code=True, use_fast=True)
processor.tokenizer.padding_side = "left"

messages = [
    {
        "role": "user",
        "content": [
            {
                "type": "video",
                "video": "../Eagle2-8B/space_woaudio.mp4",
                "nframes": 10,
            },
            {
                "type": "video",
                "video": "../Eagle2-8B/video_ocr.mp4",
                "nframes": 10,
            },
            {"type": "text", "text": "Describe these two videos respectively."},
        ],
    }
]

text_list = [processor.apply_chat_template(
    messages, tokenize=False, add_generation_prompt=True
)]
image_inputs, video_inputs, video_kwargs = processor.process_vision_info(messages, return_video_kwargs=True)
inputs = processor(text = text_list, images=image_inputs, videos=video_inputs, return_tensors="pt", padding=True, videos_kwargs=video_kwargs)
inputs = inputs.to("cuda")
model = model.to("cuda")
generated_ids = model.generate(**inputs, max_new_tokens=1024)
output_text = processor.batch_decode(
    generated_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False
)
print(output_text)

batch inference

from PIL import Image
import requests
from transformers import AutoProcessor, AutoModel
import torch
model = AutoModel.from_pretrained("nvidia/Eagle2-1B",trust_remote_code=True, torch_dtype=torch.bfloat16)
processor = AutoProcessor.from_pretrained("nvidia/Eagle2-1B", trust_remote_code=True, use_fast=True)
processor.tokenizer.padding_side = "left"

messages1 = [
    {
        "role": "user",
        "content": [
            {
                "type": "image",
                "image": "https://www.ilankelman.org/stopsigns/australia.jpg",
            },
            {"type": "text", "text": "Describe this image."},
        ],
    }
]

messages2 = [
    {
        "role": "user",
        "content": [
            {
                "type": "image",
                "image": "https://www.nvidia.com/content/dam/en-zz/Solutions/about-nvidia/logo-and-brand/01-nvidia-logo-vert-500x200-2c50-d@2x.png",
            },
            {"type": "text", "text": "Describe this image."},
        ],
    }
]

text_list = [processor.apply_chat_template(
    messages, tokenize=False, add_generation_prompt=True
) for messages in [messages1, messages2]]
image_inputs, video_inputs = processor.process_vision_info([messages1, messages2])
inputs = processor(text = text_list, images=image_inputs, videos=video_inputs, return_tensors="pt", padding=True)
inputs = inputs.to("cuda")
model = model.to("cuda")
generated_ids = model.generate(**inputs, max_new_tokens=1024)
output_text = processor.batch_decode(
    generated_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False
)
print(output_text)

TODO

  • Support vLLM Inference
  • Provide AWQ Quantization Weights
  • Provide fine-tuning scripts

License/Terms of Use

Citation

Ethical Considerations

NVIDIA believes Trustworthy AI is a shared responsibility and we have established policies and practices to enable development for a wide array of AI applications. When downloaded or used in accordance with our terms of service, developers should work with their internal model team to ensure this model meets requirements for the relevant industry and use case and addresses unforeseen product misuse.

Please report security vulnerabilities or NVIDIA AI Concerns here.

Downloads last month
1,791
Safetensors
Model size
1.06B params
Tensor type
BF16
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for nvidia/Eagle2-1B

Space using nvidia/Eagle2-1B 1

Collection including nvidia/Eagle2-1B