tinygemma3 with vision

This is trained on CIFAR-10 dataset.

How to use:

from transformers import AutoModelForImageTextToText, AutoProcessor

model_id = "ngxson/tinygemma3_cifar"

model = AutoModelForImageTextToText.from_pretrained(model_id).to("cuda")
processor = AutoProcessor.from_pretrained(model_id)


#####################

from datasets import load_dataset, Dataset

ds_full = load_dataset("uoft-cs/cifar10")

def ex_to_msg(ex):
    txt = [
        {
            "role": "user",
            "content": [
                {"type": "text", "text": "What is this:"},
                {"type": "image"}
            ]
        }
    ]
    img = ex["img"]
    return {
        "messages": txt,
        "images": [img],
    }


#####################

test_idx = 0

test_msg = ex_to_msg(ds_full["train"][test_idx])

test_txt = processor.apply_chat_template(test_msg["messages"], tokenize=False, add_generation_prompt=True)
test_input = processor(text=test_txt, images=test_msg["images"], return_tensors="pt").to(model.device)

#####################

generated_ids = model.generate(**test_input, do_sample=False, max_new_tokens=1)
generated_texts = processor.batch_decode(
    generated_ids,
    skip_special_tokens=True,
)
print(generated_texts)

# expected answer for test_idx = 0 is "airplane"
Downloads last month
10
Safetensors
Model size
39.3M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for ngxson/tinygemma3_cifar

Quantizations
1 model