djinn-7b
djinn-7b is a merge of the following models using LazyMergekit:
π Benchmarks
Open LLM Leaderboard
Model |
Average |
ARC_easy |
HellaSwag |
MMLU |
TruthfulQA_mc2 |
Winogrande |
GSM8K |
mayacinka/djinn-7B |
78.40 |
86.7 |
87.37 |
61.84 |
77.23 |
82.64 |
74.68 |
MMLU (per category)
Groups |
Version |
Filter |
n-shot |
Metric |
Value |
|
Stderr |
mmlu |
N/A |
none |
0 |
acc |
0.6184 |
Β± |
0.0039 |
- humanities |
N/A |
none |
None |
acc |
0.5741 |
Β± |
0.0067 |
- other |
N/A |
none |
None |
acc |
0.6933 |
Β± |
0.0079 |
- social_sciences |
N/A |
none |
None |
acc |
0.7166 |
Β± |
0.0080 |
- stem |
N/A |
none |
None |
acc |
0.5147 |
Β± |
0.0085 |
AutoEval
Maxime Labonne's autoeval notebook
Model |
AGIEval |
GPT4All |
TruthfulQA |
Bigbench |
Average |
djinn-7b |
44.9 |
77.33 |
77.18 |
49.36 |
62.19 |
π§© Configuration
slices:
- sources:
- model: paulml/DPOB-INMTOB-7B
layer_range: [0, 32]
- model: bardsai/jaskier-7b-dpo-v6.1
layer_range: [0, 32]
merge_method: slerp
base_model: paulml/DPOB-INMTOB-7B
parameters:
t:
- filter: self_attn
value: [0, 0.5, 0.3, 0.7, 1]
- filter: mlp
value: [1, 0.5, 0.7, 0.3, 0]
- value: 0.5
dtype: bfloat16
π» Usage
!pip install -qU transformers accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "mayacinka/djinn-7b"
messages = [{"role": "user", "content": "What is a large language model?"}]
tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])