File size: 10,699 Bytes
9f3ed26
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
848125f
9f3ed26
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
# caching.py

import functools
import unittest
import contextlib
import dataclasses
from collections import defaultdict
from typing import DefaultDict, Dict
import torch
from diffusers import DiffusionPipeline, FluxTransformer2DModel


@dataclasses.dataclass
class CacheContext:
    buffers: Dict[str, torch.Tensor] = dataclasses.field(default_factory=dict)
    incremental_name_counters: DefaultDict[str, int] = dataclasses.field(default_factory=lambda: defaultdict(int))

    def get_incremental_name(self, name=None):
        if name is None:
            name = "default"
        idx = self.incremental_name_counters[name]
        self.incremental_name_counters[name] += 1
        return f"{name}_{idx}"

    def reset_incremental_names(self):
        self.incremental_name_counters.clear()

    @torch.compiler.disable
    def get_buffer(self, name):
        return self.buffers.get(name)

    @torch.compiler.disable
    def set_buffer(self, name, buffer):
        self.buffers[name] = buffer

    def clear_buffers(self):
        self.buffers.clear()


@torch.compiler.disable
def get_buffer(name):
    cache_context = get_current_cache_context()
    assert cache_context is not None, "cache_context must be set before"
    return cache_context.get_buffer(name)


@torch.compiler.disable
def set_buffer(name, buffer):
    cache_context = get_current_cache_context()
    assert cache_context is not None, "cache_context must be set before"
    cache_context.set_buffer(name, buffer)


_current_cache_context = None


def create_cache_context():
    return CacheContext()


def get_current_cache_context():
    return _current_cache_context


def set_current_cache_context(cache_context=None):
    global _current_cache_context
    _current_cache_context = cache_context


@contextlib.contextmanager
def cache_context(cache_context):
    global _current_cache_context
    old_cache_context = _current_cache_context
    _current_cache_context = cache_context
    try:
        yield
    finally:
        _current_cache_context = old_cache_context



@torch.compiler.disable
def apply_prev_hidden_states_residual(hidden_states, encoder_hidden_states):
    hidden_states_residual = get_buffer("hidden_states_residual")
    assert hidden_states_residual is not None, "hidden_states_residual must be set before"
    hidden_states = hidden_states_residual + hidden_states

    encoder_hidden_states_residual = get_buffer("encoder_hidden_states_residual")
    assert encoder_hidden_states_residual is not None, "encoder_hidden_states_residual must be set before"
    encoder_hidden_states = encoder_hidden_states_residual + encoder_hidden_states

    hidden_states = hidden_states.contiguous()
    encoder_hidden_states = encoder_hidden_states.contiguous()

    return hidden_states, encoder_hidden_states


def are_two_tensors_similar(t1, t2, *, threshold=0.85):
    mean_diff = (t1 - t2).abs().mean()
    mean_t1 = t1.abs().mean()
    diff = mean_diff / mean_t1
    return diff.item() < threshold

@torch.compiler.disable
def get_can_use_cache(first_hidden_states_residual, threshold, parallelized=False):
    prev_first_hidden_states_residual = get_buffer("first_hidden_states_residual")
    can_use_cache = prev_first_hidden_states_residual is not None and are_two_tensors_similar(
        prev_first_hidden_states_residual,
        first_hidden_states_residual,
    )
    return can_use_cache


class CachedTransformerBlocks(torch.nn.Module):
    def __init__(
        self,
        transformer_blocks,
        single_transformer_blocks=None,
        *,
        transformer=None,
        residual_diff_threshold,
        return_hidden_states_first=True,
    ):
        super().__init__()
        self.transformer = transformer
        self.transformer_blocks = transformer_blocks
        self.single_transformer_blocks = single_transformer_blocks
        self.residual_diff_threshold = residual_diff_threshold
        self.return_hidden_states_first = return_hidden_states_first

    def forward(self, hidden_states, encoder_hidden_states, *args, **kwargs):
        if self.residual_diff_threshold <= 0.0:
            for block in self.transformer_blocks:
                hidden_states, encoder_hidden_states = block(hidden_states, encoder_hidden_states, *args, **kwargs)
                if not self.return_hidden_states_first:
                    hidden_states, encoder_hidden_states = encoder_hidden_states, hidden_states
            if self.single_transformer_blocks is not None:
                hidden_states = torch.cat([encoder_hidden_states, hidden_states], dim=1)
                for block in self.single_transformer_blocks:
                    hidden_states = block(hidden_states, *args, **kwargs)
                hidden_states = hidden_states[:, encoder_hidden_states.shape[1] :]
            return (
                (hidden_states, encoder_hidden_states)
                if self.return_hidden_states_first
                else (encoder_hidden_states, hidden_states)
            )

        original_hidden_states = hidden_states
        first_transformer_block = self.transformer_blocks[0]
        hidden_states, encoder_hidden_states = first_transformer_block(
            hidden_states, encoder_hidden_states, *args, **kwargs
        )
        if not self.return_hidden_states_first:
            hidden_states, encoder_hidden_states = encoder_hidden_states, hidden_states
        first_hidden_states_residual = hidden_states - original_hidden_states
        del original_hidden_states

        can_use_cache = get_can_use_cache(
            first_hidden_states_residual,
            threshold=self.residual_diff_threshold,
            parallelized=self.transformer is not None and getattr(self.transformer, "_is_parallelized", False),
        )

        torch._dynamo.graph_break()
        if can_use_cache:
            del first_hidden_states_residual
            hidden_states, encoder_hidden_states = apply_prev_hidden_states_residual(
                hidden_states, encoder_hidden_states
            )
        else:
            set_buffer("first_hidden_states_residual", first_hidden_states_residual)
            del first_hidden_states_residual
            (
                hidden_states,
                encoder_hidden_states,
                hidden_states_residual,
                encoder_hidden_states_residual,
            ) = self.call_remaining_transformer_blocks(hidden_states, encoder_hidden_states, *args, **kwargs)
            set_buffer("hidden_states_residual", hidden_states_residual)
            set_buffer("encoder_hidden_states_residual", encoder_hidden_states_residual)
        torch._dynamo.graph_break()

        return (
            (hidden_states, encoder_hidden_states)
            if self.return_hidden_states_first
            else (encoder_hidden_states, hidden_states)
        )

    def call_remaining_transformer_blocks(self, hidden_states, encoder_hidden_states, *args, **kwargs):
        original_hidden_states = hidden_states
        original_encoder_hidden_states = encoder_hidden_states
        for block in self.transformer_blocks[1:]:
            hidden_states, encoder_hidden_states = block(hidden_states, encoder_hidden_states, *args, **kwargs)
            if not self.return_hidden_states_first:
                hidden_states, encoder_hidden_states = encoder_hidden_states, hidden_states
        if self.single_transformer_blocks is not None:
            hidden_states = torch.cat([encoder_hidden_states, hidden_states], dim=1)
            for block in self.single_transformer_blocks:
                hidden_states = block(hidden_states, *args, **kwargs)
            encoder_hidden_states, hidden_states = hidden_states.split(
                [encoder_hidden_states.shape[1], hidden_states.shape[1] - encoder_hidden_states.shape[1]], dim=1
            )

        # hidden_states_shape = hidden_states.shape
        # encoder_hidden_states_shape = encoder_hidden_states.shape
        hidden_states = hidden_states.reshape(-1).contiguous().reshape(original_hidden_states.shape)
        encoder_hidden_states = (
            encoder_hidden_states.reshape(-1).contiguous().reshape(original_encoder_hidden_states.shape)
        )

        # hidden_states = hidden_states.contiguous()
        # encoder_hidden_states = encoder_hidden_states.contiguous()

        hidden_states_residual = hidden_states - original_hidden_states
        encoder_hidden_states_residual = encoder_hidden_states - original_encoder_hidden_states

        hidden_states_residual = hidden_states_residual.reshape(-1).contiguous().reshape(original_hidden_states.shape)
        encoder_hidden_states_residual = (
            encoder_hidden_states_residual.reshape(-1).contiguous().reshape(original_encoder_hidden_states.shape)
        )

        return hidden_states, encoder_hidden_states, hidden_states_residual, encoder_hidden_states_residual


def apply_cache_on_transformer(
    transformer: FluxTransformer2DModel,
    *,
    residual_diff_threshold=0.15,
):
    cached_transformer_blocks = torch.nn.ModuleList(
        [
            CachedTransformerBlocks(
                transformer.transformer_blocks,
                transformer.single_transformer_blocks,
                transformer=transformer,
                residual_diff_threshold=residual_diff_threshold,
                return_hidden_states_first=False,
            )
        ]
    )
    dummy_single_transformer_blocks = torch.nn.ModuleList()

    original_forward = transformer.forward

    @functools.wraps(original_forward)
    def new_forward(
        self,
        *args,
        **kwargs,
    ):
        with unittest.mock.patch.object(
            self,
            "transformer_blocks",
            cached_transformer_blocks,
        ), unittest.mock.patch.object(
            self,
            "single_transformer_blocks",
            dummy_single_transformer_blocks,
        ):
            return original_forward(
                *args,
                **kwargs,
            )

    transformer.forward = new_forward.__get__(transformer)

    return transformer


def apply_cache_on_pipe(
    pipe: DiffusionPipeline,
    *,
    shallow_patch: bool = False,
    **kwargs,
):
    original_call = pipe.__class__.__call__

    if not getattr(original_call, "_is_cached", False):

        @functools.wraps(original_call)
        def new_call(self, *args, **kwargs):
            with cache_context(create_cache_context()):
                return original_call(self, *args, **kwargs)

        pipe.__class__.__call__ = new_call

        new_call._is_cached = True

    if not shallow_patch:
        apply_cache_on_transformer(pipe.transformer, **kwargs)

    pipe._is_cached = True

    return pipe