manbeast3b
commited on
Commit
·
9f3ed26
0
Parent(s):
Initial commit
Browse files- .gitattributes +37 -0
- README.md +1 -0
- pyproject.toml +48 -0
- src/__pycache__/main.cpython-311.pyc +0 -0
- src/__pycache__/pipeline.cpython-311.pyc +0 -0
- src/caching.py +294 -0
- src/flux_schnell_edge_inference.egg-info/PKG-INFO +16 -0
- src/flux_schnell_edge_inference.egg-info/SOURCES.txt +17 -0
- src/flux_schnell_edge_inference.egg-info/dependency_links.txt +1 -0
- src/flux_schnell_edge_inference.egg-info/entry_points.txt +2 -0
- src/flux_schnell_edge_inference.egg-info/requires.txt +11 -0
- src/flux_schnell_edge_inference.egg-info/top_level.txt +3 -0
- src/main.py +55 -0
- src/pipeline.py +141 -0
- uv.lock +0 -0
.gitattributes
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
5 |
+
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
6 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
11 |
+
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
12 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
13 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
14 |
+
*.npy filter=lfs diff=lfs merge=lfs -text
|
15 |
+
*.npz filter=lfs diff=lfs merge=lfs -text
|
16 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
17 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
18 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
19 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
20 |
+
*.pickle filter=lfs diff=lfs merge=lfs -text
|
21 |
+
*.pkl filter=lfs diff=lfs merge=lfs -text
|
22 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
23 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
24 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
25 |
+
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
26 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
27 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.tar filter=lfs diff=lfs merge=lfs -text
|
29 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
30 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
31 |
+
*.wasm filter=lfs diff=lfs merge=lfs -text
|
32 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
33 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
+
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
RobertML.png filter=lfs diff=lfs merge=lfs -text
|
37 |
+
backup.png filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
# speedmax
|
pyproject.toml
ADDED
@@ -0,0 +1,48 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[build-system]
|
2 |
+
requires = ["setuptools >= 75.0"]
|
3 |
+
build-backend = "setuptools.build_meta"
|
4 |
+
|
5 |
+
[project]
|
6 |
+
name = "flux-schnell-edge-inference"
|
7 |
+
description = "An edge-maxxing model submission by RobertML for the 4090 Flux contest"
|
8 |
+
requires-python = ">=3.10,<3.13"
|
9 |
+
version = "8"
|
10 |
+
dependencies = [
|
11 |
+
"diffusers==0.31.0",
|
12 |
+
"transformers==4.46.2",
|
13 |
+
"accelerate==1.1.0",
|
14 |
+
"omegaconf==2.3.0",
|
15 |
+
"torch==2.6.0",
|
16 |
+
"protobuf==5.28.3",
|
17 |
+
"sentencepiece==0.2.0",
|
18 |
+
"edge-maxxing-pipelines @ git+https://github.com/womboai/edge-maxxing@7c760ac54f6052803dadb3ade8ebfc9679a94589#subdirectory=pipelines",
|
19 |
+
"gitpython>=3.1.43",
|
20 |
+
"hf_transfer==0.1.8",
|
21 |
+
"torchao==0.6.1",
|
22 |
+
"setuptools>=75.3.0",
|
23 |
+
"para-attn==0.3.15",
|
24 |
+
"git-lfs<=1.6"
|
25 |
+
]
|
26 |
+
|
27 |
+
[[tool.edge-maxxing.models]]
|
28 |
+
repository = "black-forest-labs/FLUX.1-schnell"
|
29 |
+
revision = "741f7c3ce8b383c54771c7003378a50191e9efe9"
|
30 |
+
exclude = ["transformer"]
|
31 |
+
|
32 |
+
[[tool.edge-maxxing.models]]
|
33 |
+
repository = "manbeast3b/flux.1-schnell-full1"
|
34 |
+
revision = "cb1b599b0d712b9aab2c4df3ad27b050a27ec146"
|
35 |
+
|
36 |
+
|
37 |
+
[[tool.edge-maxxing.models]]
|
38 |
+
repository = "city96/t5-v1_1-xxl-encoder-bf16"
|
39 |
+
revision = "1b9c856aadb864af93c1dcdc226c2774fa67bc86"
|
40 |
+
|
41 |
+
[[tool.edge-maxxing.models]]
|
42 |
+
repository = "RobertML/FLUX.1-schnell-vae_e3m2"
|
43 |
+
revision = "da0d2cd7815792fb40d084dbd8ed32b63f153d8d"
|
44 |
+
|
45 |
+
|
46 |
+
[project.scripts]
|
47 |
+
start_inference = "main:main"
|
48 |
+
|
src/__pycache__/main.cpython-311.pyc
ADDED
Binary file (4.42 kB). View file
|
|
src/__pycache__/pipeline.cpython-311.pyc
ADDED
Binary file (11.1 kB). View file
|
|
src/caching.py
ADDED
@@ -0,0 +1,294 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# caching.py
|
2 |
+
|
3 |
+
import functools
|
4 |
+
import unittest
|
5 |
+
import contextlib
|
6 |
+
import dataclasses
|
7 |
+
from collections import defaultdict
|
8 |
+
from typing import DefaultDict, Dict
|
9 |
+
import torch
|
10 |
+
from diffusers import DiffusionPipeline, FluxTransformer2DModel
|
11 |
+
|
12 |
+
|
13 |
+
@dataclasses.dataclass
|
14 |
+
class CacheContext:
|
15 |
+
buffers: Dict[str, torch.Tensor] = dataclasses.field(default_factory=dict)
|
16 |
+
incremental_name_counters: DefaultDict[str, int] = dataclasses.field(default_factory=lambda: defaultdict(int))
|
17 |
+
|
18 |
+
def get_incremental_name(self, name=None):
|
19 |
+
if name is None:
|
20 |
+
name = "default"
|
21 |
+
idx = self.incremental_name_counters[name]
|
22 |
+
self.incremental_name_counters[name] += 1
|
23 |
+
return f"{name}_{idx}"
|
24 |
+
|
25 |
+
def reset_incremental_names(self):
|
26 |
+
self.incremental_name_counters.clear()
|
27 |
+
|
28 |
+
@torch.compiler.disable
|
29 |
+
def get_buffer(self, name):
|
30 |
+
return self.buffers.get(name)
|
31 |
+
|
32 |
+
@torch.compiler.disable
|
33 |
+
def set_buffer(self, name, buffer):
|
34 |
+
self.buffers[name] = buffer
|
35 |
+
|
36 |
+
def clear_buffers(self):
|
37 |
+
self.buffers.clear()
|
38 |
+
|
39 |
+
|
40 |
+
@torch.compiler.disable
|
41 |
+
def get_buffer(name):
|
42 |
+
cache_context = get_current_cache_context()
|
43 |
+
assert cache_context is not None, "cache_context must be set before"
|
44 |
+
return cache_context.get_buffer(name)
|
45 |
+
|
46 |
+
|
47 |
+
@torch.compiler.disable
|
48 |
+
def set_buffer(name, buffer):
|
49 |
+
cache_context = get_current_cache_context()
|
50 |
+
assert cache_context is not None, "cache_context must be set before"
|
51 |
+
cache_context.set_buffer(name, buffer)
|
52 |
+
|
53 |
+
|
54 |
+
_current_cache_context = None
|
55 |
+
|
56 |
+
|
57 |
+
def create_cache_context():
|
58 |
+
return CacheContext()
|
59 |
+
|
60 |
+
|
61 |
+
def get_current_cache_context():
|
62 |
+
return _current_cache_context
|
63 |
+
|
64 |
+
|
65 |
+
def set_current_cache_context(cache_context=None):
|
66 |
+
global _current_cache_context
|
67 |
+
_current_cache_context = cache_context
|
68 |
+
|
69 |
+
|
70 |
+
@contextlib.contextmanager
|
71 |
+
def cache_context(cache_context):
|
72 |
+
global _current_cache_context
|
73 |
+
old_cache_context = _current_cache_context
|
74 |
+
_current_cache_context = cache_context
|
75 |
+
try:
|
76 |
+
yield
|
77 |
+
finally:
|
78 |
+
_current_cache_context = old_cache_context
|
79 |
+
|
80 |
+
|
81 |
+
|
82 |
+
@torch.compiler.disable
|
83 |
+
def apply_prev_hidden_states_residual(hidden_states, encoder_hidden_states):
|
84 |
+
hidden_states_residual = get_buffer("hidden_states_residual")
|
85 |
+
assert hidden_states_residual is not None, "hidden_states_residual must be set before"
|
86 |
+
hidden_states = hidden_states_residual + hidden_states
|
87 |
+
|
88 |
+
encoder_hidden_states_residual = get_buffer("encoder_hidden_states_residual")
|
89 |
+
assert encoder_hidden_states_residual is not None, "encoder_hidden_states_residual must be set before"
|
90 |
+
encoder_hidden_states = encoder_hidden_states_residual + encoder_hidden_states
|
91 |
+
|
92 |
+
hidden_states = hidden_states.contiguous()
|
93 |
+
encoder_hidden_states = encoder_hidden_states.contiguous()
|
94 |
+
|
95 |
+
return hidden_states, encoder_hidden_states
|
96 |
+
|
97 |
+
|
98 |
+
def are_two_tensors_similar(t1, t2, *, threshold=0.85):
|
99 |
+
mean_diff = (t1 - t2).abs().mean()
|
100 |
+
mean_t1 = t1.abs().mean()
|
101 |
+
diff = mean_diff / mean_t1
|
102 |
+
return diff.item() < threshold
|
103 |
+
|
104 |
+
@torch.compiler.disable
|
105 |
+
def get_can_use_cache(first_hidden_states_residual, threshold, parallelized=False):
|
106 |
+
prev_first_hidden_states_residual = get_buffer("first_hidden_states_residual")
|
107 |
+
can_use_cache = prev_first_hidden_states_residual is not None and are_two_tensors_similar(
|
108 |
+
prev_first_hidden_states_residual,
|
109 |
+
first_hidden_states_residual,
|
110 |
+
)
|
111 |
+
return can_use_cache
|
112 |
+
|
113 |
+
|
114 |
+
class CachedTransformerBlocks(torch.nn.Module):
|
115 |
+
def __init__(
|
116 |
+
self,
|
117 |
+
transformer_blocks,
|
118 |
+
single_transformer_blocks=None,
|
119 |
+
*,
|
120 |
+
transformer=None,
|
121 |
+
residual_diff_threshold,
|
122 |
+
return_hidden_states_first=True,
|
123 |
+
):
|
124 |
+
super().__init__()
|
125 |
+
self.transformer = transformer
|
126 |
+
self.transformer_blocks = transformer_blocks
|
127 |
+
self.single_transformer_blocks = single_transformer_blocks
|
128 |
+
self.residual_diff_threshold = residual_diff_threshold
|
129 |
+
self.return_hidden_states_first = return_hidden_states_first
|
130 |
+
|
131 |
+
def forward(self, hidden_states, encoder_hidden_states, *args, **kwargs):
|
132 |
+
if self.residual_diff_threshold <= 0.0:
|
133 |
+
for block in self.transformer_blocks:
|
134 |
+
hidden_states, encoder_hidden_states = block(hidden_states, encoder_hidden_states, *args, **kwargs)
|
135 |
+
if not self.return_hidden_states_first:
|
136 |
+
hidden_states, encoder_hidden_states = encoder_hidden_states, hidden_states
|
137 |
+
if self.single_transformer_blocks is not None:
|
138 |
+
hidden_states = torch.cat([encoder_hidden_states, hidden_states], dim=1)
|
139 |
+
for block in self.single_transformer_blocks:
|
140 |
+
hidden_states = block(hidden_states, *args, **kwargs)
|
141 |
+
hidden_states = hidden_states[:, encoder_hidden_states.shape[1] :]
|
142 |
+
return (
|
143 |
+
(hidden_states, encoder_hidden_states)
|
144 |
+
if self.return_hidden_states_first
|
145 |
+
else (encoder_hidden_states, hidden_states)
|
146 |
+
)
|
147 |
+
|
148 |
+
original_hidden_states = hidden_states
|
149 |
+
first_transformer_block = self.transformer_blocks[0]
|
150 |
+
hidden_states, encoder_hidden_states = first_transformer_block(
|
151 |
+
hidden_states, encoder_hidden_states, *args, **kwargs
|
152 |
+
)
|
153 |
+
if not self.return_hidden_states_first:
|
154 |
+
hidden_states, encoder_hidden_states = encoder_hidden_states, hidden_states
|
155 |
+
first_hidden_states_residual = hidden_states - original_hidden_states
|
156 |
+
del original_hidden_states
|
157 |
+
|
158 |
+
can_use_cache = get_can_use_cache(
|
159 |
+
first_hidden_states_residual,
|
160 |
+
threshold=self.residual_diff_threshold,
|
161 |
+
parallelized=self.transformer is not None and getattr(self.transformer, "_is_parallelized", False),
|
162 |
+
)
|
163 |
+
|
164 |
+
torch._dynamo.graph_break()
|
165 |
+
if can_use_cache:
|
166 |
+
del first_hidden_states_residual
|
167 |
+
hidden_states, encoder_hidden_states = apply_prev_hidden_states_residual(
|
168 |
+
hidden_states, encoder_hidden_states
|
169 |
+
)
|
170 |
+
else:
|
171 |
+
set_buffer("first_hidden_states_residual", first_hidden_states_residual)
|
172 |
+
del first_hidden_states_residual
|
173 |
+
(
|
174 |
+
hidden_states,
|
175 |
+
encoder_hidden_states,
|
176 |
+
hidden_states_residual,
|
177 |
+
encoder_hidden_states_residual,
|
178 |
+
) = self.call_remaining_transformer_blocks(hidden_states, encoder_hidden_states, *args, **kwargs)
|
179 |
+
set_buffer("hidden_states_residual", hidden_states_residual)
|
180 |
+
set_buffer("encoder_hidden_states_residual", encoder_hidden_states_residual)
|
181 |
+
torch._dynamo.graph_break()
|
182 |
+
|
183 |
+
return (
|
184 |
+
(hidden_states, encoder_hidden_states)
|
185 |
+
if self.return_hidden_states_first
|
186 |
+
else (encoder_hidden_states, hidden_states)
|
187 |
+
)
|
188 |
+
|
189 |
+
def call_remaining_transformer_blocks(self, hidden_states, encoder_hidden_states, *args, **kwargs):
|
190 |
+
original_hidden_states = hidden_states
|
191 |
+
original_encoder_hidden_states = encoder_hidden_states
|
192 |
+
for block in self.transformer_blocks[1:]:
|
193 |
+
hidden_states, encoder_hidden_states = block(hidden_states, encoder_hidden_states, *args, **kwargs)
|
194 |
+
if not self.return_hidden_states_first:
|
195 |
+
hidden_states, encoder_hidden_states = encoder_hidden_states, hidden_states
|
196 |
+
if self.single_transformer_blocks is not None:
|
197 |
+
hidden_states = torch.cat([encoder_hidden_states, hidden_states], dim=1)
|
198 |
+
for block in self.single_transformer_blocks:
|
199 |
+
hidden_states = block(hidden_states, *args, **kwargs)
|
200 |
+
encoder_hidden_states, hidden_states = hidden_states.split(
|
201 |
+
[encoder_hidden_states.shape[1], hidden_states.shape[1] - encoder_hidden_states.shape[1]], dim=1
|
202 |
+
)
|
203 |
+
|
204 |
+
# hidden_states_shape = hidden_states.shape
|
205 |
+
# encoder_hidden_states_shape = encoder_hidden_states.shape
|
206 |
+
hidden_states = hidden_states.reshape(-1).contiguous().reshape(original_hidden_states.shape)
|
207 |
+
encoder_hidden_states = (
|
208 |
+
encoder_hidden_states.reshape(-1).contiguous().reshape(original_encoder_hidden_states.shape)
|
209 |
+
)
|
210 |
+
|
211 |
+
# hidden_states = hidden_states.contiguous()
|
212 |
+
# encoder_hidden_states = encoder_hidden_states.contiguous()
|
213 |
+
|
214 |
+
hidden_states_residual = hidden_states - original_hidden_states
|
215 |
+
encoder_hidden_states_residual = encoder_hidden_states - original_encoder_hidden_states
|
216 |
+
|
217 |
+
hidden_states_residual = hidden_states_residual.reshape(-1).contiguous().reshape(original_hidden_states.shape)
|
218 |
+
encoder_hidden_states_residual = (
|
219 |
+
encoder_hidden_states_residual.reshape(-1).contiguous().reshape(original_encoder_hidden_states.shape)
|
220 |
+
)
|
221 |
+
|
222 |
+
return hidden_states, encoder_hidden_states, hidden_states_residual, encoder_hidden_states_residual
|
223 |
+
|
224 |
+
|
225 |
+
def apply_cache_on_transformer(
|
226 |
+
transformer: FluxTransformer2DModel,
|
227 |
+
*,
|
228 |
+
residual_diff_threshold=0.1,
|
229 |
+
):
|
230 |
+
cached_transformer_blocks = torch.nn.ModuleList(
|
231 |
+
[
|
232 |
+
CachedTransformerBlocks(
|
233 |
+
transformer.transformer_blocks,
|
234 |
+
transformer.single_transformer_blocks,
|
235 |
+
transformer=transformer,
|
236 |
+
residual_diff_threshold=residual_diff_threshold,
|
237 |
+
return_hidden_states_first=False,
|
238 |
+
)
|
239 |
+
]
|
240 |
+
)
|
241 |
+
dummy_single_transformer_blocks = torch.nn.ModuleList()
|
242 |
+
|
243 |
+
original_forward = transformer.forward
|
244 |
+
|
245 |
+
@functools.wraps(original_forward)
|
246 |
+
def new_forward(
|
247 |
+
self,
|
248 |
+
*args,
|
249 |
+
**kwargs,
|
250 |
+
):
|
251 |
+
with unittest.mock.patch.object(
|
252 |
+
self,
|
253 |
+
"transformer_blocks",
|
254 |
+
cached_transformer_blocks,
|
255 |
+
), unittest.mock.patch.object(
|
256 |
+
self,
|
257 |
+
"single_transformer_blocks",
|
258 |
+
dummy_single_transformer_blocks,
|
259 |
+
):
|
260 |
+
return original_forward(
|
261 |
+
*args,
|
262 |
+
**kwargs,
|
263 |
+
)
|
264 |
+
|
265 |
+
transformer.forward = new_forward.__get__(transformer)
|
266 |
+
|
267 |
+
return transformer
|
268 |
+
|
269 |
+
|
270 |
+
def apply_cache_on_pipe(
|
271 |
+
pipe: DiffusionPipeline,
|
272 |
+
*,
|
273 |
+
shallow_patch: bool = False,
|
274 |
+
**kwargs,
|
275 |
+
):
|
276 |
+
original_call = pipe.__class__.__call__
|
277 |
+
|
278 |
+
if not getattr(original_call, "_is_cached", False):
|
279 |
+
|
280 |
+
@functools.wraps(original_call)
|
281 |
+
def new_call(self, *args, **kwargs):
|
282 |
+
with cache_context(create_cache_context()):
|
283 |
+
return original_call(self, *args, **kwargs)
|
284 |
+
|
285 |
+
pipe.__class__.__call__ = new_call
|
286 |
+
|
287 |
+
new_call._is_cached = True
|
288 |
+
|
289 |
+
if not shallow_patch:
|
290 |
+
apply_cache_on_transformer(pipe.transformer, **kwargs)
|
291 |
+
|
292 |
+
pipe._is_cached = True
|
293 |
+
|
294 |
+
return pipe
|
src/flux_schnell_edge_inference.egg-info/PKG-INFO
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Metadata-Version: 2.2
|
2 |
+
Name: flux-schnell-edge-inference
|
3 |
+
Version: 8
|
4 |
+
Summary: An edge-maxxing model submission by RobertML for the 4090 Flux contest
|
5 |
+
Requires-Python: <3.13,>=3.10
|
6 |
+
Requires-Dist: diffusers==0.31.0
|
7 |
+
Requires-Dist: transformers==4.46.2
|
8 |
+
Requires-Dist: accelerate==1.1.0
|
9 |
+
Requires-Dist: omegaconf==2.3.0
|
10 |
+
Requires-Dist: torch==2.6.0
|
11 |
+
Requires-Dist: protobuf==5.28.3
|
12 |
+
Requires-Dist: sentencepiece==0.2.0
|
13 |
+
Requires-Dist: edge-maxxing-pipelines@ git+https://github.com/womboai/edge-maxxing@7c760ac54f6052803dadb3ade8ebfc9679a94589#subdirectory=pipelines
|
14 |
+
Requires-Dist: gitpython>=3.1.43
|
15 |
+
Requires-Dist: hf_transfer==0.1.8
|
16 |
+
Requires-Dist: torchao==0.6.1
|
src/flux_schnell_edge_inference.egg-info/SOURCES.txt
ADDED
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
README.md
|
2 |
+
pyproject.toml
|
3 |
+
src/main.py
|
4 |
+
src/pipeline.py
|
5 |
+
src/first_block_cache/__init__.py
|
6 |
+
src/first_block_cache/utils.py
|
7 |
+
src/first_block_cache/diffusers_adapters/__init__.py
|
8 |
+
src/first_block_cache/diffusers_adapters/cogvideox.py
|
9 |
+
src/first_block_cache/diffusers_adapters/flux.py
|
10 |
+
src/first_block_cache/diffusers_adapters/hunyuan_video.py
|
11 |
+
src/first_block_cache/diffusers_adapters/mochi.py
|
12 |
+
src/flux_schnell_edge_inference.egg-info/PKG-INFO
|
13 |
+
src/flux_schnell_edge_inference.egg-info/SOURCES.txt
|
14 |
+
src/flux_schnell_edge_inference.egg-info/dependency_links.txt
|
15 |
+
src/flux_schnell_edge_inference.egg-info/entry_points.txt
|
16 |
+
src/flux_schnell_edge_inference.egg-info/requires.txt
|
17 |
+
src/flux_schnell_edge_inference.egg-info/top_level.txt
|
src/flux_schnell_edge_inference.egg-info/dependency_links.txt
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
|
src/flux_schnell_edge_inference.egg-info/entry_points.txt
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
[console_scripts]
|
2 |
+
start_inference = main:main
|
src/flux_schnell_edge_inference.egg-info/requires.txt
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
diffusers==0.31.0
|
2 |
+
transformers==4.46.2
|
3 |
+
accelerate==1.1.0
|
4 |
+
omegaconf==2.3.0
|
5 |
+
torch==2.6.0
|
6 |
+
protobuf==5.28.3
|
7 |
+
sentencepiece==0.2.0
|
8 |
+
edge-maxxing-pipelines@ git+https://github.com/womboai/edge-maxxing@7c760ac54f6052803dadb3ade8ebfc9679a94589#subdirectory=pipelines
|
9 |
+
gitpython>=3.1.43
|
10 |
+
hf_transfer==0.1.8
|
11 |
+
torchao==0.6.1
|
src/flux_schnell_edge_inference.egg-info/top_level.txt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
first_block_cache
|
2 |
+
main
|
3 |
+
pipeline
|
src/main.py
ADDED
@@ -0,0 +1,55 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import atexit
|
2 |
+
from io import BytesIO
|
3 |
+
from multiprocessing.connection import Listener
|
4 |
+
from os import chmod, remove
|
5 |
+
from os.path import abspath, exists
|
6 |
+
from pathlib import Path
|
7 |
+
from git import Repo
|
8 |
+
import torch
|
9 |
+
|
10 |
+
from PIL.JpegImagePlugin import JpegImageFile
|
11 |
+
from pipelines.models import TextToImageRequest
|
12 |
+
from pipeline import load_pipeline, infer
|
13 |
+
SOCKET = abspath(Path(__file__).parent.parent / "inferences.sock")
|
14 |
+
|
15 |
+
|
16 |
+
def at_exit():
|
17 |
+
torch.cuda.empty_cache()
|
18 |
+
|
19 |
+
|
20 |
+
def main():
|
21 |
+
atexit.register(at_exit)
|
22 |
+
|
23 |
+
print(f"Loading pipeline")
|
24 |
+
pipeline = load_pipeline()
|
25 |
+
|
26 |
+
print(f"Pipeline loaded, creating socket at '{SOCKET}'")
|
27 |
+
|
28 |
+
if exists(SOCKET):
|
29 |
+
remove(SOCKET)
|
30 |
+
|
31 |
+
with Listener(SOCKET) as listener:
|
32 |
+
chmod(SOCKET, 0o777)
|
33 |
+
|
34 |
+
print(f"Awaiting connections")
|
35 |
+
with listener.accept() as connection:
|
36 |
+
print(f"Connected")
|
37 |
+
generator = torch.Generator("cuda")
|
38 |
+
while True:
|
39 |
+
try:
|
40 |
+
request = TextToImageRequest.model_validate_json(connection.recv_bytes().decode("utf-8"))
|
41 |
+
except EOFError:
|
42 |
+
print(f"Inference socket exiting")
|
43 |
+
|
44 |
+
return
|
45 |
+
image = infer(request, pipeline, generator.manual_seed(request.seed))
|
46 |
+
data = BytesIO()
|
47 |
+
image.save(data, format=JpegImageFile.format)
|
48 |
+
|
49 |
+
packet = data.getvalue()
|
50 |
+
|
51 |
+
connection.send_bytes(packet )
|
52 |
+
|
53 |
+
|
54 |
+
if __name__ == '__main__':
|
55 |
+
main()
|
src/pipeline.py
ADDED
@@ -0,0 +1,141 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
import os
|
3 |
+
import gc
|
4 |
+
import torch
|
5 |
+
from PIL.Image import Image
|
6 |
+
from dataclasses import dataclass
|
7 |
+
from diffusers import DiffusionPipeline, AutoencoderTiny, FluxTransformer2DModel
|
8 |
+
from transformers import T5EncoderModel
|
9 |
+
from huggingface_hub.constants import HF_HUB_CACHE
|
10 |
+
from torchao.quantization import quantize_, int8_weight_only, float8_weight_only
|
11 |
+
from caching import apply_cache_on_pipe
|
12 |
+
from pipelines.models import TextToImageRequest
|
13 |
+
from torch import Generator
|
14 |
+
|
15 |
+
# Configuration settings using a dataclass for clarity
|
16 |
+
@dataclass
|
17 |
+
class Config:
|
18 |
+
CKPT_ID: str = "black-forest-labs/FLUX.1-schnell"
|
19 |
+
CKPT_REVISION: str = "741f7c3ce8b383c54771c7003378a50191e9efe9"
|
20 |
+
DEVICE: str = "cuda"
|
21 |
+
DTYPE = torch.bfloat16
|
22 |
+
PYTORCH_CUDA_ALLOC_CONF: str = "expandable_segments:True"
|
23 |
+
|
24 |
+
def _initialize_environment():
|
25 |
+
"""Set up PyTorch and CUDA environment variables for optimal performance."""
|
26 |
+
torch.backends.cuda.matmul.allow_tf32 = True
|
27 |
+
torch.backends.cudnn.enabled = True
|
28 |
+
torch.backends.cudnn.benchmark = True
|
29 |
+
os.environ['PYTORCH_CUDA_ALLOC_CONF'] = Config.PYTORCH_CUDA_ALLOC_CONF
|
30 |
+
|
31 |
+
def _clear_gpu_memory():
|
32 |
+
"""Free up GPU memory to prevent memory-related issues."""
|
33 |
+
gc.collect()
|
34 |
+
torch.cuda.empty_cache()
|
35 |
+
torch.cuda.reset_max_memory_allocated()
|
36 |
+
torch.cuda.reset_peak_memory_stats()
|
37 |
+
|
38 |
+
def _load_text_encoder_model():
|
39 |
+
"""Load the text encoder model with specified configuration."""
|
40 |
+
return T5EncoderModel.from_pretrained(
|
41 |
+
"city96/t5-v1_1-xxl-encoder-bf16",
|
42 |
+
revision="1b9c856aadb864af93c1dcdc226c2774fa67bc86",
|
43 |
+
torch_dtype=Config.DTYPE
|
44 |
+
).to(memory_format=torch.channels_last)
|
45 |
+
|
46 |
+
def _load_vae_model():
|
47 |
+
"""Load the variational autoencoder (VAE) model with specified configuration."""
|
48 |
+
return AutoencoderTiny.from_pretrained(
|
49 |
+
"RobertML/FLUX.1-schnell-vae_e3m2",
|
50 |
+
revision="da0d2cd7815792fb40d084dbd8ed32b63f153d8d",
|
51 |
+
torch_dtype=Config.DTYPE
|
52 |
+
)
|
53 |
+
|
54 |
+
def _load_transformer_model():
|
55 |
+
"""Load the transformer model from a specific cached path."""
|
56 |
+
# transformer_path = os.path.join(
|
57 |
+
# HF_HUB_CACHE,"models--manbeast3b--flux.1-schnell-full1/snapshots/cb1b599b0d712b9aab2c4df3ad27b050a27ec146",
|
58 |
+
|
59 |
+
# )
|
60 |
+
transformer_path = os.path.join(
|
61 |
+
HF_HUB_CACHE,
|
62 |
+
"models--manbeast3b--flux.1-schnell-full1/snapshots/cb1b599b0d712b9aab2c4df3ad27b050a27ec146",
|
63 |
+
"transformer"
|
64 |
+
)
|
65 |
+
return FluxTransformer2DModel.from_pretrained(
|
66 |
+
transformer_path,
|
67 |
+
torch_dtype=Config.DTYPE,
|
68 |
+
use_safetensors=False
|
69 |
+
).to(memory_format=torch.channels_last)
|
70 |
+
|
71 |
+
def _warmup_pipeline(pipeline):
|
72 |
+
"""Warm up the pipeline by running it with an empty prompt to initialize internal caches."""
|
73 |
+
for _ in range(3):
|
74 |
+
pipeline(prompt=" ")
|
75 |
+
|
76 |
+
def load_pipeline():
|
77 |
+
"""
|
78 |
+
Load and configure the diffusion pipeline for text-to-image generation.
|
79 |
+
|
80 |
+
Returns:
|
81 |
+
DiffusionPipeline: The configured pipeline ready for inference.
|
82 |
+
"""
|
83 |
+
_clear_gpu_memory()
|
84 |
+
|
85 |
+
# Load individual components
|
86 |
+
text_encoder = _load_text_encoder_model()
|
87 |
+
vae = _load_vae_model()
|
88 |
+
transformer = _load_transformer_model()
|
89 |
+
|
90 |
+
# Assemble the diffusion pipeline
|
91 |
+
pipeline = DiffusionPipeline.from_pretrained(
|
92 |
+
Config.CKPT_ID,
|
93 |
+
vae=vae,
|
94 |
+
revision=Config.CKPT_REVISION,
|
95 |
+
transformer=transformer,
|
96 |
+
text_encoder_2=text_encoder,
|
97 |
+
torch_dtype=Config.DTYPE,
|
98 |
+
).to(Config.DEVICE)
|
99 |
+
|
100 |
+
# Apply optimizations
|
101 |
+
apply_cache_on_pipe(pipeline)
|
102 |
+
pipeline.to(memory_format=torch.channels_last)
|
103 |
+
pipeline.vae = torch.compile(pipeline.vae, mode="max-autotune")
|
104 |
+
quantize_(pipeline.vae, int8_weight_only())
|
105 |
+
quantize_(pipeline.vae, float8_weight_only())
|
106 |
+
|
107 |
+
# Warm up the pipeline to ensure readiness
|
108 |
+
_warmup_pipeline(pipeline)
|
109 |
+
|
110 |
+
return pipeline
|
111 |
+
|
112 |
+
@torch.no_grad()
|
113 |
+
def infer(request: TextToImageRequest, pipeline: DiffusionPipeline, generator: Generator) -> Image:
|
114 |
+
"""
|
115 |
+
Generate an image from a text prompt using the diffusion pipeline.
|
116 |
+
|
117 |
+
Args:
|
118 |
+
request (TextToImageRequest): The request containing the prompt and image parameters.
|
119 |
+
pipeline (DiffusionPipeline): The pre-loaded diffusion pipeline.
|
120 |
+
generator (Generator): The random seed generator for reproducibility.
|
121 |
+
|
122 |
+
Returns:
|
123 |
+
Image: The generated image in PIL format.
|
124 |
+
"""
|
125 |
+
image = pipeline(
|
126 |
+
prompt=request.prompt,
|
127 |
+
generator=generator,
|
128 |
+
guidance_scale=0.0,
|
129 |
+
num_inference_steps=4,
|
130 |
+
max_sequence_length=256,
|
131 |
+
height=request.height,
|
132 |
+
width=request.width,
|
133 |
+
output_type="pil"
|
134 |
+
).images[0]
|
135 |
+
return image
|
136 |
+
|
137 |
+
# Initialize environment settings when the module is imported
|
138 |
+
_initialize_environment()
|
139 |
+
|
140 |
+
# For compatibility with other scripts, alias load_pipeline as load
|
141 |
+
load = load_pipeline
|
uv.lock
ADDED
The diff for this file is too large to render.
See raw diff
|
|