speecht5_finetuned_urdu

This model is a fine-tuned version of microsoft/speecht5_tts on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3509

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 4
  • eval_batch_size: 2
  • seed: 42
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 32
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 100
  • training_steps: 10000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss
0.7169 0.3481 100 0.5856
0.5139 0.6963 200 0.4443
0.4639 1.0418 300 0.4204
0.4627 1.3899 400 0.4093
0.4494 1.7380 500 0.4021
0.4326 2.0836 600 0.3988
0.4388 2.4317 700 0.3928
0.4327 2.7798 800 0.3884
0.4263 3.1253 900 0.3863
0.4252 3.4735 1000 0.3819
0.4237 3.8216 1100 0.3835
0.4153 4.1671 1200 0.3778
0.4176 4.5152 1300 0.3784
0.4145 4.8634 1400 0.3752
0.4142 5.2089 1500 0.3752
0.4097 5.5570 1600 0.3707
0.404 5.9051 1700 0.3712
0.4044 6.2507 1800 0.3690
0.4068 6.5988 1900 0.3705
0.4026 6.9469 2000 0.3676
0.3982 7.2924 2100 0.3684
0.4017 7.6406 2200 0.3678
0.3999 7.9887 2300 0.3655
0.4015 8.3342 2400 0.3657
0.3992 8.6823 2500 0.3642
0.3877 9.0279 2600 0.3642
0.3981 9.3760 2700 0.3640
0.3936 9.7241 2800 0.3637
0.3814 10.0696 2900 0.3633
0.3907 10.4178 3000 0.3612
0.3953 10.7659 3100 0.3608
0.3887 11.1114 3200 0.3606
0.389 11.4595 3300 0.3617
0.389 11.8077 3400 0.3597
0.385 12.1532 3500 0.3589
0.3866 12.5013 3600 0.3580
0.3882 12.8494 3700 0.3593
0.3908 13.1950 3800 0.3577
0.3873 13.5431 3900 0.3567
0.3874 13.8912 4000 0.3565
0.3912 14.2367 4100 0.3596
0.3856 14.5849 4200 0.3582
0.3857 14.9330 4300 0.3567
0.3859 15.2785 4400 0.3564
0.3803 15.6266 4500 0.3551
0.3837 15.9748 4600 0.3580
0.3842 16.3203 4700 0.3557
0.3827 16.6684 4800 0.3545
0.3691 17.0139 4900 0.3569
0.382 17.3621 5000 0.3572
0.377 17.7102 5100 0.3550
0.3683 18.0557 5200 0.3546
0.3779 18.4038 5300 0.3553
0.3805 18.7520 5400 0.3547
0.3799 19.0975 5500 0.3546
0.3836 19.4456 5600 0.3534
0.3763 19.7937 5700 0.3537
0.3774 20.1393 5800 0.3524
0.3754 20.4874 5900 0.3526
0.3777 20.8355 6000 0.3525
0.3791 21.1810 6100 0.3566
0.3729 21.5292 6200 0.3528
0.3771 21.8773 6300 0.3532
0.3757 22.2228 6400 0.3526
0.3783 22.5709 6500 0.3525
0.377 22.9191 6600 0.3522
0.3799 23.2646 6700 0.3553
0.379 23.6127 6800 0.3528
0.3744 23.9608 6900 0.3523
0.3738 24.3064 7000 0.3533
0.3771 24.6545 7100 0.3526
0.3671 25.0 7200 0.3536
0.3745 25.3481 7300 0.3512
0.3765 25.6963 7400 0.3519
0.3691 26.0418 7500 0.3523
0.3717 26.3899 7600 0.3524
0.3759 26.7380 7700 0.3524
0.3635 27.0836 7800 0.3513
0.3775 27.4317 7900 0.3526
0.377 27.7798 8000 0.3525
0.3731 28.1253 8100 0.3513
0.3721 28.4735 8200 0.3514
0.3756 28.8216 8300 0.3518
0.3718 29.1671 8400 0.3512
0.3745 29.5152 8500 0.3523
0.374 29.8634 8600 0.3528
0.3773 30.2089 8700 0.3507
0.3805 30.5570 8800 0.3504
0.3729 30.9051 8900 0.3518
0.3749 31.2507 9000 0.3511
0.3728 31.5988 9100 0.3518
0.3728 31.9469 9200 0.3519
0.3767 32.2924 9300 0.3505
0.3729 32.6406 9400 0.3504
0.3725 32.9887 9500 0.3496
0.37 33.3342 9600 0.3512
0.371 33.6823 9700 0.3510
0.3623 34.0279 9800 0.3516
0.3721 34.3760 9900 0.3509
0.3722 34.7241 10000 0.3509

Framework versions

  • Transformers 4.51.1
  • Pytorch 2.6.0+cu124
  • Datasets 3.5.0
  • Tokenizers 0.21.1
Downloads last month
45
Safetensors
Model size
144M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for m-aliabbas1/speecht5_finetuned_urdu

Finetuned
(1076)
this model