MMSearch-R1
Collection
MMSearch-R1 is a solution designed to train LMMs to perform on-demand multimodal search in real-world environment.
•
4 items
•
Updated
•
1
MMSearch-R1-7B is a search-augmented LMM trained with end-to-end reinforcement learning, equipped with the ability to invoke multimodal search tools on demand. In 2025-08, we update this model by integrating improved reasoning capabilities. Please check our blog.
Models | MMK12 | MathVerse (testmini) | MathVision (testmini) | MathVista (testmini) | MMMU (val) | AI2D | ChartQA | MME | RealworldQA | OCRBench | DocVQA | MMBench | MMStar | MiaBench |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Qwen2.5-VL-7B | 34.4 | 46.2 | 24.0 | 66.6 | 49.8 | 93.3 | 94.4 | 630.4/1685.2 | 68.5 | 85.2 | 94.6 | 82.9 | 62.6 | 81.7 |
General Search | 43.6 | 52.0 | 27.3 | 74.7 | 56.1 | 94.6 | 94.0 | 718.9/1775.3 | 65.5 | 77.8 | 89.4 | 84.0 | 60.4 | 44.4 |
Models | Infoseek | MMSearch | FVQA | SimpleVQA |
---|---|---|---|---|
Qwen2.5-VL-7B | 20.1 | 12.8 | 20.3 | 38.4 |
MMSearch | 55.1 | 53.8 | 58.4 | 57.4 |
General Search | 52.0 | 54.9 | 52.8 | 57.0 |
@article{wu2025mmsearch,
title={MMSearch-R1: Incentivizing LMMs to Search},
author={Wu, Jinming and Deng, Zihao and Li, Wei and Liu, Yiding and You, Bo and Li, Bo and Ma, Zejun and Liu, Ziwei},
journal={arXiv preprint arXiv:2506.20670},
year={2025}
}