Mistral-Small-24B-Instruct-2501-NVFP4

NVFP4-quantized version of mistralai/Mistral-Small-24B-Instruct-2501 produced with llmcompressor.

Notes

  • Quantization scheme: NVFP4 (linear layers, lm_head excluded)
  • Calibration samples: 512
  • Max sequence length during calibration: 2048

Deployment

Use with vLLM

This model can be deployed efficiently using the vLLM backend, as shown in the example below.

from vllm import LLM, SamplingParams
from transformers import AutoTokenizer

model_id = "llmat/Mistral-Small-24B-Instruct-2501-NVFP4"
number_gpus = 1

sampling_params = SamplingParams(temperature=0.6, top_p=0.9, max_tokens=256)

tokenizer = AutoTokenizer.from_pretrained(model_id)

messages = [
    {"role": "system", "content": "You are a pirate chatbot who always responds in pirate speak!"},
    {"role": "user", "content": "Who are you?"},
]

prompts = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=False)

llm = LLM(model=model_id, tensor_parallel_size=number_gpus)

outputs = llm.generate(prompts, sampling_params)

generated_text = outputs[0].outputs[0].text
print(generated_text)

vLLM aslo supports OpenAI-compatible serving. See the documentation for more details.

Downloads last month
39
Safetensors
Model size
13.8B params
Tensor type
BF16
F32
F8_E4M3
U8
Inference Providers NEW
This model isn't deployed by any Inference Provider. 馃檵 Ask for provider support

Model tree for llmat/Mistral-Small-24B-Instruct-2501-NVFP4