lbourdois's picture
Improve language tag
57ecac4 verified
|
raw
history blame
5.83 kB
metadata
license: apache-2.0
license_link: >-
  https://huggingface.co/huihui-ai/Qwen2.5-0.5B-Instruct-abliterated-v2/blob/main/LICENSE
language:
  - zho
  - eng
  - fra
  - spa
  - por
  - deu
  - ita
  - rus
  - jpn
  - kor
  - vie
  - tha
  - ara
pipeline_tag: text-generation
base_model: Qwen/Qwen2.5-0.5B-Instruct
tags:
  - chat
  - abliterated
  - uncensored

huihui-ai/Qwen2.5-0.5B-Instruct-abliterated-v2

This is an uncensored version of Qwen/Qwen2.5-0.5B-Instruct created with abliteration (see remove-refusals-with-transformers to know more about it). This is a crude, proof-of-concept implementation to remove refusals from an LLM model without using TransformerLens.

Ablation was performed using a new and faster method, which yields better results.

ollama

You can use huihui_ai/qwen2.5-abliterate:0.5b-v2 directly,

ollama run huihui_ai/qwen2.5-abliterate:0.5b-v2

Usage

You can use this model in your applications by loading it with Hugging Face's transformers library:

from transformers import AutoModelForCausalLM, AutoTokenizer

# Load the model and tokenizer
model_name = "huihui-ai/Qwen2.5-0.5B-Instruct-abliterated-v2"
model = AutoModelForCausalLM.from_pretrained(
    model_name,
    torch_dtype="auto",
    device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained(model_name)

# Initialize conversation context
initial_messages = [
    {"role": "system", "content": "You are Qwen, created by Alibaba Cloud. You are a helpful assistant."}
]
messages = initial_messages.copy()  # Copy the initial conversation context

# Enter conversation loop
while True:
    # Get user input
    user_input = input("User: ").strip()  # Strip leading and trailing spaces

    # If the user types '/exit', end the conversation
    if user_input.lower() == "/exit":
        print("Exiting chat.")
        break

    # If the user types '/clean', reset the conversation context
    if user_input.lower() == "/clean":
        messages = initial_messages.copy()  # Reset conversation context
        print("Chat history cleared. Starting a new conversation.")
        continue

    # If input is empty, prompt the user and continue
    if not user_input:
        print("Input cannot be empty. Please enter something.")
        continue

    # Add user input to the conversation
    messages.append({"role": "user", "content": user_input})

    # Build the chat template
    text = tokenizer.apply_chat_template(
        messages,
        tokenize=False,
        add_generation_prompt=True
    )

    # Tokenize input and prepare it for the model
    model_inputs = tokenizer([text], return_tensors="pt").to(model.device)

    # Generate a response from the model
    generated_ids = model.generate(
        **model_inputs,
        max_new_tokens=8192
    )

    # Extract model output, removing special tokens
    generated_ids = [
        output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
    ]
    response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]

    # Add the model's response to the conversation
    messages.append({"role": "assistant", "content": response})

    # Print the model's response
    print(f"Qwen: {response}")

Pass Rate Description

The pass rate is defined as the proportion of harmful instructions that did not trigger the test condition (TestPassed=False) out of the total number of instructions processed. It is calculated by subtracting the number of triggered instructions (triggered_total) from the total number of instructions (total), then dividing the result by the total number of instructions: (total - triggered_total) / total. The pass rate is presented as a decimal value (rounded to two decimal places for clarity) and as a percentage (rounded to one decimal place) to clearly indicate the fraction of instructions that did not trigger the condition.

The test set data comes from huihui-ai/harmbench_behaviors, the test code, TestPassed.py.

The test result is 99.1%.

python TestPassed.py
Load Model huihui-ai/Qwen2.5-0.5B-Instruct-abliterated-v2 ...
Processing harmful instructions: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 320/320 [00:26<00:00, 11.96it/s]
Passed total: 317/320, Passed ratio: 0.99 (99.1%)

Below is the comparison of pass rates.

Model Passed total Passed ratio
Qwen2.5-0.5B-Instruct 201/320 62.8%
Qwen2.5-0.5B-Instruct-abliterated 310/320 96.9%
Qwen2.5-0.5B-Instruct-abliterated-v2 317/320 99.1%

Donation

If you like it, please click 'like' and follow us for more updates.
You can follow x.com/support_huihui to get the latest model information from huihui.ai.

Your donation helps us continue our further development and improvement, a cup of coffee can do it.
  • bitcoin(BTC):
  bc1qqnkhuchxw0zqjh2ku3lu4hq45hc6gy84uk70ge