Version_weird_ASAP_FineTuningBERT_AugV12_k6_task1_organization_k6_k6_fold4

This model is a fine-tuned version of bert-base-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.9653
  • Qwk: 0.5828
  • Mse: 0.9653
  • Rmse: 0.9825

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 100

Training results

Training Loss Epoch Step Validation Loss Qwk Mse Rmse
No log 1.0 2 7.9975 0.0037 7.9975 2.8280
No log 2.0 4 5.4541 0.0449 5.4541 2.3354
No log 3.0 6 4.1685 0.0118 4.1685 2.0417
No log 4.0 8 3.2598 0.0118 3.2598 1.8055
No log 5.0 10 2.5700 0.0079 2.5700 1.6031
No log 6.0 12 2.0650 0.1041 2.0650 1.4370
No log 7.0 14 1.6176 0.0420 1.6176 1.2718
No log 8.0 16 1.3930 0.0316 1.3930 1.1803
No log 9.0 18 1.0774 0.0316 1.0774 1.0380
No log 10.0 20 0.9347 0.0316 0.9347 0.9668
No log 11.0 22 0.8550 0.1986 0.8550 0.9247
No log 12.0 24 0.7994 0.1587 0.7994 0.8941
No log 13.0 26 0.7714 0.1587 0.7714 0.8783
No log 14.0 28 0.7468 0.1751 0.7468 0.8642
No log 15.0 30 0.7266 0.2915 0.7266 0.8524
No log 16.0 32 0.6020 0.4483 0.6020 0.7759
No log 17.0 34 0.6210 0.5960 0.6210 0.7880
No log 18.0 36 0.7556 0.5338 0.7556 0.8692
No log 19.0 38 0.7287 0.5878 0.7287 0.8536
No log 20.0 40 0.9568 0.5492 0.9568 0.9782
No log 21.0 42 0.7246 0.6328 0.7246 0.8512
No log 22.0 44 0.8599 0.6331 0.8599 0.9273
No log 23.0 46 1.2360 0.5105 1.2360 1.1118
No log 24.0 48 0.8426 0.6299 0.8426 0.9180
No log 25.0 50 1.1873 0.5150 1.1873 1.0896
No log 26.0 52 0.7628 0.6277 0.7628 0.8734
No log 27.0 54 1.4321 0.4838 1.4321 1.1967
No log 28.0 56 1.1818 0.5136 1.1818 1.0871
No log 29.0 58 1.4707 0.4876 1.4707 1.2127
No log 30.0 60 0.8946 0.6126 0.8946 0.9459
No log 31.0 62 1.0482 0.5763 1.0482 1.0238
No log 32.0 64 1.7707 0.4705 1.7707 1.3307
No log 33.0 66 1.0094 0.5866 1.0094 1.0047
No log 34.0 68 1.0126 0.5811 1.0126 1.0063
No log 35.0 70 1.6173 0.4777 1.6173 1.2717
No log 36.0 72 0.9262 0.5865 0.9262 0.9624
No log 37.0 74 0.9788 0.5717 0.9788 0.9893
No log 38.0 76 1.4004 0.4823 1.4004 1.1834
No log 39.0 78 0.8096 0.6380 0.8096 0.8998
No log 40.0 80 0.5438 0.6646 0.5438 0.7374
No log 41.0 82 0.6508 0.6517 0.6508 0.8067
No log 42.0 84 1.1766 0.5006 1.1766 1.0847
No log 43.0 86 0.9797 0.5517 0.9797 0.9898
No log 44.0 88 0.6845 0.6571 0.6845 0.8273
No log 45.0 90 0.9307 0.5792 0.9307 0.9647
No log 46.0 92 1.4962 0.4712 1.4962 1.2232
No log 47.0 94 1.2444 0.5002 1.2444 1.1155
No log 48.0 96 0.8194 0.6206 0.8194 0.9052
No log 49.0 98 0.9670 0.5864 0.9670 0.9834
No log 50.0 100 1.3856 0.4793 1.3856 1.1771
No log 51.0 102 1.1314 0.5248 1.1314 1.0637
No log 52.0 104 0.9158 0.5868 0.9158 0.9570
No log 53.0 106 1.1422 0.5413 1.1422 1.0687
No log 54.0 108 1.0284 0.5795 1.0284 1.0141
No log 55.0 110 0.7949 0.6431 0.7949 0.8916
No log 56.0 112 0.9471 0.5970 0.9471 0.9732
No log 57.0 114 0.9746 0.5854 0.9746 0.9872
No log 58.0 116 1.0848 0.5279 1.0848 1.0415
No log 59.0 118 0.9107 0.5847 0.9107 0.9543
No log 60.0 120 0.9653 0.5828 0.9653 0.9825

Framework versions

  • Transformers 4.47.0
  • Pytorch 2.5.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
16
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for genki10/Version_weird_ASAP_FineTuningBERT_AugV12_k6_task1_organization_k6_k6_fold4

Finetuned
(5837)
this model