Version_weird_ASAP_FineTuningBERT_AugV12_k6_task1_organization_k6_k6_fold4
This model is a fine-tuned version of bert-base-uncased on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.9653
- Qwk: 0.5828
- Mse: 0.9653
- Rmse: 0.9825
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 100
Training results
Training Loss | Epoch | Step | Validation Loss | Qwk | Mse | Rmse |
---|---|---|---|---|---|---|
No log | 1.0 | 2 | 7.9975 | 0.0037 | 7.9975 | 2.8280 |
No log | 2.0 | 4 | 5.4541 | 0.0449 | 5.4541 | 2.3354 |
No log | 3.0 | 6 | 4.1685 | 0.0118 | 4.1685 | 2.0417 |
No log | 4.0 | 8 | 3.2598 | 0.0118 | 3.2598 | 1.8055 |
No log | 5.0 | 10 | 2.5700 | 0.0079 | 2.5700 | 1.6031 |
No log | 6.0 | 12 | 2.0650 | 0.1041 | 2.0650 | 1.4370 |
No log | 7.0 | 14 | 1.6176 | 0.0420 | 1.6176 | 1.2718 |
No log | 8.0 | 16 | 1.3930 | 0.0316 | 1.3930 | 1.1803 |
No log | 9.0 | 18 | 1.0774 | 0.0316 | 1.0774 | 1.0380 |
No log | 10.0 | 20 | 0.9347 | 0.0316 | 0.9347 | 0.9668 |
No log | 11.0 | 22 | 0.8550 | 0.1986 | 0.8550 | 0.9247 |
No log | 12.0 | 24 | 0.7994 | 0.1587 | 0.7994 | 0.8941 |
No log | 13.0 | 26 | 0.7714 | 0.1587 | 0.7714 | 0.8783 |
No log | 14.0 | 28 | 0.7468 | 0.1751 | 0.7468 | 0.8642 |
No log | 15.0 | 30 | 0.7266 | 0.2915 | 0.7266 | 0.8524 |
No log | 16.0 | 32 | 0.6020 | 0.4483 | 0.6020 | 0.7759 |
No log | 17.0 | 34 | 0.6210 | 0.5960 | 0.6210 | 0.7880 |
No log | 18.0 | 36 | 0.7556 | 0.5338 | 0.7556 | 0.8692 |
No log | 19.0 | 38 | 0.7287 | 0.5878 | 0.7287 | 0.8536 |
No log | 20.0 | 40 | 0.9568 | 0.5492 | 0.9568 | 0.9782 |
No log | 21.0 | 42 | 0.7246 | 0.6328 | 0.7246 | 0.8512 |
No log | 22.0 | 44 | 0.8599 | 0.6331 | 0.8599 | 0.9273 |
No log | 23.0 | 46 | 1.2360 | 0.5105 | 1.2360 | 1.1118 |
No log | 24.0 | 48 | 0.8426 | 0.6299 | 0.8426 | 0.9180 |
No log | 25.0 | 50 | 1.1873 | 0.5150 | 1.1873 | 1.0896 |
No log | 26.0 | 52 | 0.7628 | 0.6277 | 0.7628 | 0.8734 |
No log | 27.0 | 54 | 1.4321 | 0.4838 | 1.4321 | 1.1967 |
No log | 28.0 | 56 | 1.1818 | 0.5136 | 1.1818 | 1.0871 |
No log | 29.0 | 58 | 1.4707 | 0.4876 | 1.4707 | 1.2127 |
No log | 30.0 | 60 | 0.8946 | 0.6126 | 0.8946 | 0.9459 |
No log | 31.0 | 62 | 1.0482 | 0.5763 | 1.0482 | 1.0238 |
No log | 32.0 | 64 | 1.7707 | 0.4705 | 1.7707 | 1.3307 |
No log | 33.0 | 66 | 1.0094 | 0.5866 | 1.0094 | 1.0047 |
No log | 34.0 | 68 | 1.0126 | 0.5811 | 1.0126 | 1.0063 |
No log | 35.0 | 70 | 1.6173 | 0.4777 | 1.6173 | 1.2717 |
No log | 36.0 | 72 | 0.9262 | 0.5865 | 0.9262 | 0.9624 |
No log | 37.0 | 74 | 0.9788 | 0.5717 | 0.9788 | 0.9893 |
No log | 38.0 | 76 | 1.4004 | 0.4823 | 1.4004 | 1.1834 |
No log | 39.0 | 78 | 0.8096 | 0.6380 | 0.8096 | 0.8998 |
No log | 40.0 | 80 | 0.5438 | 0.6646 | 0.5438 | 0.7374 |
No log | 41.0 | 82 | 0.6508 | 0.6517 | 0.6508 | 0.8067 |
No log | 42.0 | 84 | 1.1766 | 0.5006 | 1.1766 | 1.0847 |
No log | 43.0 | 86 | 0.9797 | 0.5517 | 0.9797 | 0.9898 |
No log | 44.0 | 88 | 0.6845 | 0.6571 | 0.6845 | 0.8273 |
No log | 45.0 | 90 | 0.9307 | 0.5792 | 0.9307 | 0.9647 |
No log | 46.0 | 92 | 1.4962 | 0.4712 | 1.4962 | 1.2232 |
No log | 47.0 | 94 | 1.2444 | 0.5002 | 1.2444 | 1.1155 |
No log | 48.0 | 96 | 0.8194 | 0.6206 | 0.8194 | 0.9052 |
No log | 49.0 | 98 | 0.9670 | 0.5864 | 0.9670 | 0.9834 |
No log | 50.0 | 100 | 1.3856 | 0.4793 | 1.3856 | 1.1771 |
No log | 51.0 | 102 | 1.1314 | 0.5248 | 1.1314 | 1.0637 |
No log | 52.0 | 104 | 0.9158 | 0.5868 | 0.9158 | 0.9570 |
No log | 53.0 | 106 | 1.1422 | 0.5413 | 1.1422 | 1.0687 |
No log | 54.0 | 108 | 1.0284 | 0.5795 | 1.0284 | 1.0141 |
No log | 55.0 | 110 | 0.7949 | 0.6431 | 0.7949 | 0.8916 |
No log | 56.0 | 112 | 0.9471 | 0.5970 | 0.9471 | 0.9732 |
No log | 57.0 | 114 | 0.9746 | 0.5854 | 0.9746 | 0.9872 |
No log | 58.0 | 116 | 1.0848 | 0.5279 | 1.0848 | 1.0415 |
No log | 59.0 | 118 | 0.9107 | 0.5847 | 0.9107 | 0.9543 |
No log | 60.0 | 120 | 0.9653 | 0.5828 | 0.9653 | 0.9825 |
Framework versions
- Transformers 4.47.0
- Pytorch 2.5.1+cu121
- Datasets 3.2.0
- Tokenizers 0.21.0
- Downloads last month
- 16
Model tree for genki10/Version_weird_ASAP_FineTuningBERT_AugV12_k6_task1_organization_k6_k6_fold4
Base model
google-bert/bert-base-uncased