Version_weird_ASAP_FineTuningBERT_AugV12_k6_task1_organization_k6_k6_fold1
This model is a fine-tuned version of bert-base-uncased on the None dataset. It achieves the following results on the evaluation set:
- Loss: 1.0784
- Qwk: 0.5608
- Mse: 1.0782
- Rmse: 1.0383
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 100
Training results
Training Loss | Epoch | Step | Validation Loss | Qwk | Mse | Rmse |
---|---|---|---|---|---|---|
No log | 1.0 | 2 | 10.8694 | 0.0096 | 10.8669 | 3.2965 |
No log | 2.0 | 4 | 9.7175 | 0.0 | 9.7152 | 3.1169 |
No log | 3.0 | 6 | 8.3088 | 0.0 | 8.3064 | 2.8821 |
No log | 4.0 | 8 | 6.8210 | 0.0 | 6.8186 | 2.6112 |
No log | 5.0 | 10 | 4.9698 | 0.0229 | 4.9675 | 2.2288 |
No log | 6.0 | 12 | 3.4020 | 0.0040 | 3.4000 | 1.8439 |
No log | 7.0 | 14 | 2.5117 | 0.0403 | 2.5101 | 1.5843 |
No log | 8.0 | 16 | 1.8690 | 0.1156 | 1.8673 | 1.3665 |
No log | 9.0 | 18 | 1.3743 | 0.0315 | 1.3728 | 1.1717 |
No log | 10.0 | 20 | 1.0810 | 0.0 | 1.0796 | 1.0391 |
No log | 11.0 | 22 | 0.9004 | 0.2963 | 0.8992 | 0.9483 |
No log | 12.0 | 24 | 0.9006 | 0.1427 | 0.8995 | 0.9484 |
No log | 13.0 | 26 | 0.8883 | 0.0837 | 0.8873 | 0.9420 |
No log | 14.0 | 28 | 0.8812 | 0.0749 | 0.8803 | 0.9382 |
No log | 15.0 | 30 | 0.9998 | 0.0749 | 0.9991 | 0.9995 |
No log | 16.0 | 32 | 0.9352 | 0.1278 | 0.9345 | 0.9667 |
No log | 17.0 | 34 | 0.8939 | 0.3805 | 0.8932 | 0.9451 |
No log | 18.0 | 36 | 0.8054 | 0.4902 | 0.8048 | 0.8971 |
No log | 19.0 | 38 | 0.6013 | 0.5621 | 0.6006 | 0.7750 |
No log | 20.0 | 40 | 0.5894 | 0.6118 | 0.5888 | 0.7674 |
No log | 21.0 | 42 | 0.5613 | 0.6613 | 0.5608 | 0.7489 |
No log | 22.0 | 44 | 0.7696 | 0.5847 | 0.7693 | 0.8771 |
No log | 23.0 | 46 | 0.7002 | 0.6288 | 0.6999 | 0.8366 |
No log | 24.0 | 48 | 0.8389 | 0.6261 | 0.8388 | 0.9159 |
No log | 25.0 | 50 | 0.7440 | 0.6474 | 0.7441 | 0.8626 |
No log | 26.0 | 52 | 1.4712 | 0.4941 | 1.4712 | 1.2129 |
No log | 27.0 | 54 | 0.7426 | 0.6485 | 0.7425 | 0.8617 |
No log | 28.0 | 56 | 0.8887 | 0.5991 | 0.8886 | 0.9426 |
No log | 29.0 | 58 | 1.0579 | 0.5651 | 1.0577 | 1.0285 |
No log | 30.0 | 60 | 0.8559 | 0.6267 | 0.8557 | 0.9251 |
No log | 31.0 | 62 | 0.6509 | 0.6707 | 0.6505 | 0.8066 |
No log | 32.0 | 64 | 1.2116 | 0.5249 | 1.2115 | 1.1007 |
No log | 33.0 | 66 | 1.1074 | 0.5596 | 1.1072 | 1.0522 |
No log | 34.0 | 68 | 0.6941 | 0.6444 | 0.6938 | 0.8329 |
No log | 35.0 | 70 | 0.9711 | 0.5846 | 0.9709 | 0.9853 |
No log | 36.0 | 72 | 0.9329 | 0.6052 | 0.9328 | 0.9658 |
No log | 37.0 | 74 | 0.8585 | 0.6148 | 0.8584 | 0.9265 |
No log | 38.0 | 76 | 1.1577 | 0.5540 | 1.1576 | 1.0759 |
No log | 39.0 | 78 | 0.8270 | 0.6181 | 0.8268 | 0.9093 |
No log | 40.0 | 80 | 1.0261 | 0.5649 | 1.0258 | 1.0128 |
No log | 41.0 | 82 | 0.9168 | 0.6119 | 0.9165 | 0.9574 |
No log | 42.0 | 84 | 0.8711 | 0.6167 | 0.8709 | 0.9332 |
No log | 43.0 | 86 | 0.7902 | 0.6257 | 0.7898 | 0.8887 |
No log | 44.0 | 88 | 1.0792 | 0.5453 | 1.0789 | 1.0387 |
No log | 45.0 | 90 | 1.3722 | 0.5047 | 1.3719 | 1.1713 |
No log | 46.0 | 92 | 0.8290 | 0.6247 | 0.8288 | 0.9104 |
No log | 47.0 | 94 | 0.8507 | 0.6158 | 0.8504 | 0.9222 |
No log | 48.0 | 96 | 1.0920 | 0.5546 | 1.0918 | 1.0449 |
No log | 49.0 | 98 | 0.7932 | 0.6229 | 0.7929 | 0.8904 |
No log | 50.0 | 100 | 0.7191 | 0.6534 | 0.7189 | 0.8479 |
No log | 51.0 | 102 | 1.0784 | 0.5608 | 1.0782 | 1.0383 |
Framework versions
- Transformers 4.47.0
- Pytorch 2.5.1+cu121
- Datasets 3.2.0
- Tokenizers 0.21.0
- Downloads last month
- 8
Model tree for genki10/Version_weird_ASAP_FineTuningBERT_AugV12_k6_task1_organization_k6_k6_fold1
Base model
google-bert/bert-base-uncased