Version_weird_ASAP_FineTuningBERT_AugV12_k6_task1_organization_k6_k6_fold1

This model is a fine-tuned version of bert-base-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.0784
  • Qwk: 0.5608
  • Mse: 1.0782
  • Rmse: 1.0383

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 100

Training results

Training Loss Epoch Step Validation Loss Qwk Mse Rmse
No log 1.0 2 10.8694 0.0096 10.8669 3.2965
No log 2.0 4 9.7175 0.0 9.7152 3.1169
No log 3.0 6 8.3088 0.0 8.3064 2.8821
No log 4.0 8 6.8210 0.0 6.8186 2.6112
No log 5.0 10 4.9698 0.0229 4.9675 2.2288
No log 6.0 12 3.4020 0.0040 3.4000 1.8439
No log 7.0 14 2.5117 0.0403 2.5101 1.5843
No log 8.0 16 1.8690 0.1156 1.8673 1.3665
No log 9.0 18 1.3743 0.0315 1.3728 1.1717
No log 10.0 20 1.0810 0.0 1.0796 1.0391
No log 11.0 22 0.9004 0.2963 0.8992 0.9483
No log 12.0 24 0.9006 0.1427 0.8995 0.9484
No log 13.0 26 0.8883 0.0837 0.8873 0.9420
No log 14.0 28 0.8812 0.0749 0.8803 0.9382
No log 15.0 30 0.9998 0.0749 0.9991 0.9995
No log 16.0 32 0.9352 0.1278 0.9345 0.9667
No log 17.0 34 0.8939 0.3805 0.8932 0.9451
No log 18.0 36 0.8054 0.4902 0.8048 0.8971
No log 19.0 38 0.6013 0.5621 0.6006 0.7750
No log 20.0 40 0.5894 0.6118 0.5888 0.7674
No log 21.0 42 0.5613 0.6613 0.5608 0.7489
No log 22.0 44 0.7696 0.5847 0.7693 0.8771
No log 23.0 46 0.7002 0.6288 0.6999 0.8366
No log 24.0 48 0.8389 0.6261 0.8388 0.9159
No log 25.0 50 0.7440 0.6474 0.7441 0.8626
No log 26.0 52 1.4712 0.4941 1.4712 1.2129
No log 27.0 54 0.7426 0.6485 0.7425 0.8617
No log 28.0 56 0.8887 0.5991 0.8886 0.9426
No log 29.0 58 1.0579 0.5651 1.0577 1.0285
No log 30.0 60 0.8559 0.6267 0.8557 0.9251
No log 31.0 62 0.6509 0.6707 0.6505 0.8066
No log 32.0 64 1.2116 0.5249 1.2115 1.1007
No log 33.0 66 1.1074 0.5596 1.1072 1.0522
No log 34.0 68 0.6941 0.6444 0.6938 0.8329
No log 35.0 70 0.9711 0.5846 0.9709 0.9853
No log 36.0 72 0.9329 0.6052 0.9328 0.9658
No log 37.0 74 0.8585 0.6148 0.8584 0.9265
No log 38.0 76 1.1577 0.5540 1.1576 1.0759
No log 39.0 78 0.8270 0.6181 0.8268 0.9093
No log 40.0 80 1.0261 0.5649 1.0258 1.0128
No log 41.0 82 0.9168 0.6119 0.9165 0.9574
No log 42.0 84 0.8711 0.6167 0.8709 0.9332
No log 43.0 86 0.7902 0.6257 0.7898 0.8887
No log 44.0 88 1.0792 0.5453 1.0789 1.0387
No log 45.0 90 1.3722 0.5047 1.3719 1.1713
No log 46.0 92 0.8290 0.6247 0.8288 0.9104
No log 47.0 94 0.8507 0.6158 0.8504 0.9222
No log 48.0 96 1.0920 0.5546 1.0918 1.0449
No log 49.0 98 0.7932 0.6229 0.7929 0.8904
No log 50.0 100 0.7191 0.6534 0.7189 0.8479
No log 51.0 102 1.0784 0.5608 1.0782 1.0383

Framework versions

  • Transformers 4.47.0
  • Pytorch 2.5.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
8
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for genki10/Version_weird_ASAP_FineTuningBERT_AugV12_k6_task1_organization_k6_k6_fold1

Finetuned
(5837)
this model