Version_weird_ASAP_FineTuningBERT_AugV12_k2_task1_organization_k2_k2_fold4

This model is a fine-tuned version of bert-base-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8212
  • Qwk: 0.6020
  • Mse: 0.8212
  • Rmse: 0.9062

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 100

Training results

Training Loss Epoch Step Validation Loss Qwk Mse Rmse
No log 1.0 1 12.0953 -0.0069 12.0953 3.4778
No log 2.0 2 10.7527 -0.0059 10.7527 3.2791
No log 3.0 3 9.4586 0.0018 9.4586 3.0755
No log 4.0 4 8.4742 0.0018 8.4742 2.9110
No log 5.0 5 7.4879 0.0018 7.4879 2.7364
No log 6.0 6 6.6788 0.0018 6.6788 2.5843
No log 7.0 7 6.1203 0.0011 6.1203 2.4739
No log 8.0 8 5.3684 0.0218 5.3684 2.3170
No log 9.0 9 4.7008 0.0156 4.7008 2.1681
No log 10.0 10 4.1880 0.0156 4.1880 2.0465
No log 11.0 11 3.7247 0.0079 3.7247 1.9299
No log 12.0 12 3.3374 0.0040 3.3374 1.8268
No log 13.0 13 2.9040 0.0040 2.9040 1.7041
No log 14.0 14 2.5569 0.0040 2.5569 1.5990
No log 15.0 15 2.2934 0.1594 2.2934 1.5144
No log 16.0 16 2.0637 0.0828 2.0637 1.4366
No log 17.0 17 1.8564 0.0470 1.8564 1.3625
No log 18.0 18 1.6732 0.0420 1.6732 1.2935
No log 19.0 19 1.5034 0.0420 1.5034 1.2261
No log 20.0 20 1.3516 0.0316 1.3516 1.1626
No log 21.0 21 1.2316 0.0212 1.2316 1.1098
No log 22.0 22 1.1272 0.0212 1.1272 1.0617
No log 23.0 23 1.0321 0.0316 1.0321 1.0159
No log 24.0 24 0.9525 0.0316 0.9525 0.9760
No log 25.0 25 0.8839 0.0316 0.8839 0.9401
No log 26.0 26 0.8420 0.2901 0.8420 0.9176
No log 27.0 27 0.7914 0.4234 0.7914 0.8896
No log 28.0 28 0.7405 0.4138 0.7405 0.8605
No log 29.0 29 0.6910 0.4382 0.6910 0.8312
No log 30.0 30 0.6506 0.4538 0.6506 0.8066
No log 31.0 31 0.6117 0.4850 0.6117 0.7821
No log 32.0 32 0.6034 0.4367 0.6034 0.7768
No log 33.0 33 0.5483 0.4977 0.5483 0.7405
No log 34.0 34 0.5232 0.5550 0.5232 0.7233
No log 35.0 35 0.5087 0.5236 0.5087 0.7132
No log 36.0 36 0.5490 0.4795 0.5490 0.7410
No log 37.0 37 0.5293 0.4985 0.5293 0.7275
No log 38.0 38 0.4912 0.5391 0.4912 0.7009
No log 39.0 39 0.5025 0.5301 0.5025 0.7089
No log 40.0 40 0.5651 0.5069 0.5651 0.7517
No log 41.0 41 0.5411 0.5875 0.5411 0.7356
No log 42.0 42 0.5293 0.6205 0.5293 0.7275
No log 43.0 43 0.5578 0.6209 0.5578 0.7469
No log 44.0 44 0.6621 0.5638 0.6621 0.8137
No log 45.0 45 0.6520 0.5776 0.6520 0.8075
No log 46.0 46 0.5829 0.6356 0.5829 0.7635
No log 47.0 47 0.6412 0.6035 0.6412 0.8008
No log 48.0 48 0.7585 0.5489 0.7585 0.8709
No log 49.0 49 0.7499 0.5579 0.7499 0.8659
No log 50.0 50 0.6637 0.6129 0.6637 0.8147
No log 51.0 51 0.6978 0.6026 0.6978 0.8353
No log 52.0 52 0.8705 0.5340 0.8705 0.9330
No log 53.0 53 0.8617 0.5487 0.8617 0.9283
No log 54.0 54 0.7155 0.6181 0.7155 0.8459
No log 55.0 55 0.7258 0.6154 0.7258 0.8520
No log 56.0 56 0.8755 0.5541 0.8755 0.9357
No log 57.0 57 0.9762 0.5308 0.9762 0.9880
No log 58.0 58 0.9445 0.5466 0.9445 0.9719
No log 59.0 59 0.8313 0.5914 0.8313 0.9118
No log 60.0 60 0.9198 0.5642 0.9198 0.9590
No log 61.0 61 1.0846 0.5299 1.0846 1.0414
No log 62.0 62 1.0749 0.5347 1.0749 1.0368
No log 63.0 63 1.0902 0.5362 1.0902 1.0441
No log 64.0 64 1.2252 0.5054 1.2252 1.1069
No log 65.0 65 1.1047 0.5252 1.1047 1.0510
No log 66.0 66 0.8212 0.6020 0.8212 0.9062

Framework versions

  • Transformers 4.47.0
  • Pytorch 2.5.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
9
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for genki10/Version_weird_ASAP_FineTuningBERT_AugV12_k2_task1_organization_k2_k2_fold4

Finetuned
(5823)
this model