Version_weird_ASAP_FineTuningBERT_AugV12_k2_task1_organization_k2_k2_fold4
This model is a fine-tuned version of bert-base-uncased on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.8212
- Qwk: 0.6020
- Mse: 0.8212
- Rmse: 0.9062
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 100
Training results
Training Loss | Epoch | Step | Validation Loss | Qwk | Mse | Rmse |
---|---|---|---|---|---|---|
No log | 1.0 | 1 | 12.0953 | -0.0069 | 12.0953 | 3.4778 |
No log | 2.0 | 2 | 10.7527 | -0.0059 | 10.7527 | 3.2791 |
No log | 3.0 | 3 | 9.4586 | 0.0018 | 9.4586 | 3.0755 |
No log | 4.0 | 4 | 8.4742 | 0.0018 | 8.4742 | 2.9110 |
No log | 5.0 | 5 | 7.4879 | 0.0018 | 7.4879 | 2.7364 |
No log | 6.0 | 6 | 6.6788 | 0.0018 | 6.6788 | 2.5843 |
No log | 7.0 | 7 | 6.1203 | 0.0011 | 6.1203 | 2.4739 |
No log | 8.0 | 8 | 5.3684 | 0.0218 | 5.3684 | 2.3170 |
No log | 9.0 | 9 | 4.7008 | 0.0156 | 4.7008 | 2.1681 |
No log | 10.0 | 10 | 4.1880 | 0.0156 | 4.1880 | 2.0465 |
No log | 11.0 | 11 | 3.7247 | 0.0079 | 3.7247 | 1.9299 |
No log | 12.0 | 12 | 3.3374 | 0.0040 | 3.3374 | 1.8268 |
No log | 13.0 | 13 | 2.9040 | 0.0040 | 2.9040 | 1.7041 |
No log | 14.0 | 14 | 2.5569 | 0.0040 | 2.5569 | 1.5990 |
No log | 15.0 | 15 | 2.2934 | 0.1594 | 2.2934 | 1.5144 |
No log | 16.0 | 16 | 2.0637 | 0.0828 | 2.0637 | 1.4366 |
No log | 17.0 | 17 | 1.8564 | 0.0470 | 1.8564 | 1.3625 |
No log | 18.0 | 18 | 1.6732 | 0.0420 | 1.6732 | 1.2935 |
No log | 19.0 | 19 | 1.5034 | 0.0420 | 1.5034 | 1.2261 |
No log | 20.0 | 20 | 1.3516 | 0.0316 | 1.3516 | 1.1626 |
No log | 21.0 | 21 | 1.2316 | 0.0212 | 1.2316 | 1.1098 |
No log | 22.0 | 22 | 1.1272 | 0.0212 | 1.1272 | 1.0617 |
No log | 23.0 | 23 | 1.0321 | 0.0316 | 1.0321 | 1.0159 |
No log | 24.0 | 24 | 0.9525 | 0.0316 | 0.9525 | 0.9760 |
No log | 25.0 | 25 | 0.8839 | 0.0316 | 0.8839 | 0.9401 |
No log | 26.0 | 26 | 0.8420 | 0.2901 | 0.8420 | 0.9176 |
No log | 27.0 | 27 | 0.7914 | 0.4234 | 0.7914 | 0.8896 |
No log | 28.0 | 28 | 0.7405 | 0.4138 | 0.7405 | 0.8605 |
No log | 29.0 | 29 | 0.6910 | 0.4382 | 0.6910 | 0.8312 |
No log | 30.0 | 30 | 0.6506 | 0.4538 | 0.6506 | 0.8066 |
No log | 31.0 | 31 | 0.6117 | 0.4850 | 0.6117 | 0.7821 |
No log | 32.0 | 32 | 0.6034 | 0.4367 | 0.6034 | 0.7768 |
No log | 33.0 | 33 | 0.5483 | 0.4977 | 0.5483 | 0.7405 |
No log | 34.0 | 34 | 0.5232 | 0.5550 | 0.5232 | 0.7233 |
No log | 35.0 | 35 | 0.5087 | 0.5236 | 0.5087 | 0.7132 |
No log | 36.0 | 36 | 0.5490 | 0.4795 | 0.5490 | 0.7410 |
No log | 37.0 | 37 | 0.5293 | 0.4985 | 0.5293 | 0.7275 |
No log | 38.0 | 38 | 0.4912 | 0.5391 | 0.4912 | 0.7009 |
No log | 39.0 | 39 | 0.5025 | 0.5301 | 0.5025 | 0.7089 |
No log | 40.0 | 40 | 0.5651 | 0.5069 | 0.5651 | 0.7517 |
No log | 41.0 | 41 | 0.5411 | 0.5875 | 0.5411 | 0.7356 |
No log | 42.0 | 42 | 0.5293 | 0.6205 | 0.5293 | 0.7275 |
No log | 43.0 | 43 | 0.5578 | 0.6209 | 0.5578 | 0.7469 |
No log | 44.0 | 44 | 0.6621 | 0.5638 | 0.6621 | 0.8137 |
No log | 45.0 | 45 | 0.6520 | 0.5776 | 0.6520 | 0.8075 |
No log | 46.0 | 46 | 0.5829 | 0.6356 | 0.5829 | 0.7635 |
No log | 47.0 | 47 | 0.6412 | 0.6035 | 0.6412 | 0.8008 |
No log | 48.0 | 48 | 0.7585 | 0.5489 | 0.7585 | 0.8709 |
No log | 49.0 | 49 | 0.7499 | 0.5579 | 0.7499 | 0.8659 |
No log | 50.0 | 50 | 0.6637 | 0.6129 | 0.6637 | 0.8147 |
No log | 51.0 | 51 | 0.6978 | 0.6026 | 0.6978 | 0.8353 |
No log | 52.0 | 52 | 0.8705 | 0.5340 | 0.8705 | 0.9330 |
No log | 53.0 | 53 | 0.8617 | 0.5487 | 0.8617 | 0.9283 |
No log | 54.0 | 54 | 0.7155 | 0.6181 | 0.7155 | 0.8459 |
No log | 55.0 | 55 | 0.7258 | 0.6154 | 0.7258 | 0.8520 |
No log | 56.0 | 56 | 0.8755 | 0.5541 | 0.8755 | 0.9357 |
No log | 57.0 | 57 | 0.9762 | 0.5308 | 0.9762 | 0.9880 |
No log | 58.0 | 58 | 0.9445 | 0.5466 | 0.9445 | 0.9719 |
No log | 59.0 | 59 | 0.8313 | 0.5914 | 0.8313 | 0.9118 |
No log | 60.0 | 60 | 0.9198 | 0.5642 | 0.9198 | 0.9590 |
No log | 61.0 | 61 | 1.0846 | 0.5299 | 1.0846 | 1.0414 |
No log | 62.0 | 62 | 1.0749 | 0.5347 | 1.0749 | 1.0368 |
No log | 63.0 | 63 | 1.0902 | 0.5362 | 1.0902 | 1.0441 |
No log | 64.0 | 64 | 1.2252 | 0.5054 | 1.2252 | 1.1069 |
No log | 65.0 | 65 | 1.1047 | 0.5252 | 1.1047 | 1.0510 |
No log | 66.0 | 66 | 0.8212 | 0.6020 | 0.8212 | 0.9062 |
Framework versions
- Transformers 4.47.0
- Pytorch 2.5.1+cu121
- Datasets 3.2.0
- Tokenizers 0.21.0
- Downloads last month
- 9
Model tree for genki10/Version_weird_ASAP_FineTuningBERT_AugV12_k2_task1_organization_k2_k2_fold4
Base model
google-bert/bert-base-uncased