Version_weird_ASAP_FineTuningBERT_AugV12_k15_task1_organization_k15_k15_fold1
This model is a fine-tuned version of bert-base-uncased on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.9513
- Qwk: 0.5470
- Mse: 0.9509
- Rmse: 0.9752
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 100
Training results
Training Loss | Epoch | Step | Validation Loss | Qwk | Mse | Rmse |
---|---|---|---|---|---|---|
No log | 1.0 | 3 | 10.4482 | -0.0072 | 10.4459 | 3.2320 |
No log | 2.0 | 6 | 7.4753 | 0.0 | 7.4731 | 2.7337 |
No log | 3.0 | 9 | 5.0845 | 0.0118 | 5.0823 | 2.2544 |
No log | 4.0 | 12 | 3.6009 | 0.0 | 3.5989 | 1.8971 |
No log | 5.0 | 15 | 2.6022 | 0.0 | 2.6004 | 1.6126 |
No log | 6.0 | 18 | 1.8218 | 0.0315 | 1.8202 | 1.3491 |
No log | 7.0 | 21 | 1.3690 | 0.0 | 1.3675 | 1.1694 |
No log | 8.0 | 24 | 1.0505 | 0.0 | 1.0491 | 1.0243 |
No log | 9.0 | 27 | 0.9151 | 0.1120 | 0.9140 | 0.9560 |
No log | 10.0 | 30 | 0.9265 | 0.0429 | 0.9255 | 0.9620 |
No log | 11.0 | 33 | 1.1403 | 0.0429 | 1.1395 | 1.0675 |
No log | 12.0 | 36 | 1.3652 | 0.1718 | 1.3645 | 1.1681 |
No log | 13.0 | 39 | 1.4218 | 0.2260 | 1.4212 | 1.1921 |
No log | 14.0 | 42 | 1.7763 | 0.1913 | 1.7759 | 1.3326 |
No log | 15.0 | 45 | 1.4090 | 0.3023 | 1.4085 | 1.1868 |
No log | 16.0 | 48 | 0.5185 | 0.5804 | 0.5177 | 0.7195 |
No log | 17.0 | 51 | 0.4690 | 0.6585 | 0.4682 | 0.6842 |
No log | 18.0 | 54 | 0.4507 | 0.7013 | 0.4501 | 0.6709 |
No log | 19.0 | 57 | 0.5190 | 0.7074 | 0.5186 | 0.7201 |
No log | 20.0 | 60 | 0.6897 | 0.6530 | 0.6895 | 0.8303 |
No log | 21.0 | 63 | 0.7672 | 0.6346 | 0.7670 | 0.8758 |
No log | 22.0 | 66 | 1.0355 | 0.5614 | 1.0353 | 1.0175 |
No log | 23.0 | 69 | 1.0384 | 0.5631 | 1.0383 | 1.0189 |
No log | 24.0 | 72 | 0.7359 | 0.6521 | 0.7357 | 0.8577 |
No log | 25.0 | 75 | 1.7462 | 0.4538 | 1.7460 | 1.3214 |
No log | 26.0 | 78 | 0.5689 | 0.6818 | 0.5687 | 0.7541 |
No log | 27.0 | 81 | 1.3437 | 0.5012 | 1.3436 | 1.1591 |
No log | 28.0 | 84 | 0.5869 | 0.6912 | 0.5867 | 0.7659 |
No log | 29.0 | 87 | 1.3578 | 0.4926 | 1.3576 | 1.1651 |
No log | 30.0 | 90 | 0.6226 | 0.6555 | 0.6221 | 0.7887 |
No log | 31.0 | 93 | 1.3525 | 0.4792 | 1.3522 | 1.1628 |
No log | 32.0 | 96 | 0.5314 | 0.6771 | 0.5310 | 0.7287 |
No log | 33.0 | 99 | 0.8834 | 0.6115 | 0.8832 | 0.9398 |
No log | 34.0 | 102 | 0.7571 | 0.6360 | 0.7570 | 0.8701 |
No log | 35.0 | 105 | 0.4899 | 0.7227 | 0.4897 | 0.6998 |
No log | 36.0 | 108 | 1.2831 | 0.4970 | 1.2830 | 1.1327 |
No log | 37.0 | 111 | 0.8070 | 0.5908 | 0.8066 | 0.8981 |
No log | 38.0 | 114 | 0.8400 | 0.5913 | 0.8396 | 0.9163 |
No log | 39.0 | 117 | 0.6635 | 0.6453 | 0.6632 | 0.8144 |
No log | 40.0 | 120 | 1.0155 | 0.5500 | 1.0152 | 1.0076 |
No log | 41.0 | 123 | 0.8890 | 0.5636 | 0.8886 | 0.9427 |
No log | 42.0 | 126 | 0.9799 | 0.5411 | 0.9796 | 0.9897 |
No log | 43.0 | 129 | 0.8360 | 0.6080 | 0.8358 | 0.9142 |
No log | 44.0 | 132 | 0.9687 | 0.5573 | 0.9684 | 0.9841 |
No log | 45.0 | 135 | 0.8720 | 0.5721 | 0.8717 | 0.9336 |
No log | 46.0 | 138 | 1.1820 | 0.4946 | 1.1817 | 1.0871 |
No log | 47.0 | 141 | 0.7276 | 0.6349 | 0.7273 | 0.8528 |
No log | 48.0 | 144 | 1.0224 | 0.5494 | 1.0222 | 1.0110 |
No log | 49.0 | 147 | 0.7543 | 0.6011 | 0.7540 | 0.8683 |
No log | 50.0 | 150 | 1.2295 | 0.4756 | 1.2292 | 1.1087 |
No log | 51.0 | 153 | 0.8990 | 0.5508 | 0.8987 | 0.9480 |
No log | 52.0 | 156 | 1.0261 | 0.5414 | 1.0258 | 1.0128 |
No log | 53.0 | 159 | 0.8859 | 0.6087 | 0.8857 | 0.9411 |
No log | 54.0 | 162 | 0.7708 | 0.6402 | 0.7705 | 0.8778 |
No log | 55.0 | 165 | 0.9513 | 0.5470 | 0.9509 | 0.9752 |
Framework versions
- Transformers 4.47.0
- Pytorch 2.5.1+cu121
- Datasets 3.2.0
- Tokenizers 0.21.0
- Downloads last month
- 1
Model tree for genki10/Version_weird_ASAP_FineTuningBERT_AugV12_k15_task1_organization_k15_k15_fold1
Base model
google-bert/bert-base-uncased