Version_weird_ASAP_FineTuningBERT_AugV12_k15_task1_organization_k15_k15_fold1

This model is a fine-tuned version of bert-base-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.9513
  • Qwk: 0.5470
  • Mse: 0.9509
  • Rmse: 0.9752

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 100

Training results

Training Loss Epoch Step Validation Loss Qwk Mse Rmse
No log 1.0 3 10.4482 -0.0072 10.4459 3.2320
No log 2.0 6 7.4753 0.0 7.4731 2.7337
No log 3.0 9 5.0845 0.0118 5.0823 2.2544
No log 4.0 12 3.6009 0.0 3.5989 1.8971
No log 5.0 15 2.6022 0.0 2.6004 1.6126
No log 6.0 18 1.8218 0.0315 1.8202 1.3491
No log 7.0 21 1.3690 0.0 1.3675 1.1694
No log 8.0 24 1.0505 0.0 1.0491 1.0243
No log 9.0 27 0.9151 0.1120 0.9140 0.9560
No log 10.0 30 0.9265 0.0429 0.9255 0.9620
No log 11.0 33 1.1403 0.0429 1.1395 1.0675
No log 12.0 36 1.3652 0.1718 1.3645 1.1681
No log 13.0 39 1.4218 0.2260 1.4212 1.1921
No log 14.0 42 1.7763 0.1913 1.7759 1.3326
No log 15.0 45 1.4090 0.3023 1.4085 1.1868
No log 16.0 48 0.5185 0.5804 0.5177 0.7195
No log 17.0 51 0.4690 0.6585 0.4682 0.6842
No log 18.0 54 0.4507 0.7013 0.4501 0.6709
No log 19.0 57 0.5190 0.7074 0.5186 0.7201
No log 20.0 60 0.6897 0.6530 0.6895 0.8303
No log 21.0 63 0.7672 0.6346 0.7670 0.8758
No log 22.0 66 1.0355 0.5614 1.0353 1.0175
No log 23.0 69 1.0384 0.5631 1.0383 1.0189
No log 24.0 72 0.7359 0.6521 0.7357 0.8577
No log 25.0 75 1.7462 0.4538 1.7460 1.3214
No log 26.0 78 0.5689 0.6818 0.5687 0.7541
No log 27.0 81 1.3437 0.5012 1.3436 1.1591
No log 28.0 84 0.5869 0.6912 0.5867 0.7659
No log 29.0 87 1.3578 0.4926 1.3576 1.1651
No log 30.0 90 0.6226 0.6555 0.6221 0.7887
No log 31.0 93 1.3525 0.4792 1.3522 1.1628
No log 32.0 96 0.5314 0.6771 0.5310 0.7287
No log 33.0 99 0.8834 0.6115 0.8832 0.9398
No log 34.0 102 0.7571 0.6360 0.7570 0.8701
No log 35.0 105 0.4899 0.7227 0.4897 0.6998
No log 36.0 108 1.2831 0.4970 1.2830 1.1327
No log 37.0 111 0.8070 0.5908 0.8066 0.8981
No log 38.0 114 0.8400 0.5913 0.8396 0.9163
No log 39.0 117 0.6635 0.6453 0.6632 0.8144
No log 40.0 120 1.0155 0.5500 1.0152 1.0076
No log 41.0 123 0.8890 0.5636 0.8886 0.9427
No log 42.0 126 0.9799 0.5411 0.9796 0.9897
No log 43.0 129 0.8360 0.6080 0.8358 0.9142
No log 44.0 132 0.9687 0.5573 0.9684 0.9841
No log 45.0 135 0.8720 0.5721 0.8717 0.9336
No log 46.0 138 1.1820 0.4946 1.1817 1.0871
No log 47.0 141 0.7276 0.6349 0.7273 0.8528
No log 48.0 144 1.0224 0.5494 1.0222 1.0110
No log 49.0 147 0.7543 0.6011 0.7540 0.8683
No log 50.0 150 1.2295 0.4756 1.2292 1.1087
No log 51.0 153 0.8990 0.5508 0.8987 0.9480
No log 52.0 156 1.0261 0.5414 1.0258 1.0128
No log 53.0 159 0.8859 0.6087 0.8857 0.9411
No log 54.0 162 0.7708 0.6402 0.7705 0.8778
No log 55.0 165 0.9513 0.5470 0.9509 0.9752

Framework versions

  • Transformers 4.47.0
  • Pytorch 2.5.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
1
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for genki10/Version_weird_ASAP_FineTuningBERT_AugV12_k15_task1_organization_k15_k15_fold1

Finetuned
(5837)
this model