Version_concise_ASAP_FineTuningBERT_AugV12_k1_task1_organization_k1_k1_fold2

This model is a fine-tuned version of bert-base-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8303
  • Qwk: 0.4868
  • Mse: 0.8297
  • Rmse: 0.9109

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 100

Training results

Training Loss Epoch Step Validation Loss Qwk Mse Rmse
No log 1.0 2 9.3481 0.0 9.3483 3.0575
No log 2.0 4 7.9430 0.0 7.9432 2.8184
No log 3.0 6 6.4297 0.0 6.4299 2.5357
No log 4.0 8 5.2472 0.0117 5.2475 2.2907
No log 5.0 10 4.2428 0.0 4.2430 2.0599
No log 6.0 12 3.4794 0.0 3.4797 1.8654
No log 7.0 14 2.6988 0.0 2.6991 1.6429
No log 8.0 16 2.1197 0.0703 2.1200 1.4560
No log 9.0 18 1.9120 0.0384 1.9124 1.3829
No log 10.0 20 1.5110 0.0107 1.5114 1.2294
No log 11.0 22 1.4265 0.0213 1.4270 1.1946
No log 12.0 24 1.1714 0.0 1.1719 1.0825
No log 13.0 26 1.1856 0.0 1.1862 1.0891
No log 14.0 28 0.9033 0.0399 0.9037 0.9507
No log 15.0 30 0.9177 0.2425 0.9180 0.9581
No log 16.0 32 0.7279 0.3720 0.7281 0.8533
No log 17.0 34 1.0334 -0.0926 1.0339 1.0168
No log 18.0 36 0.8170 0.2037 0.8173 0.9041
No log 19.0 38 1.3399 0.2230 1.3400 1.1576
No log 20.0 40 1.6036 0.1848 1.6039 1.2664
No log 21.0 42 0.6923 0.3811 0.6921 0.8319
No log 22.0 44 1.0683 -0.0312 1.0689 1.0339
No log 23.0 46 0.9522 0.0764 0.9527 0.9761
No log 24.0 48 0.6308 0.3460 0.6306 0.7941
No log 25.0 50 0.6579 0.3673 0.6576 0.8109
No log 26.0 52 0.6206 0.3796 0.6202 0.7875
No log 27.0 54 0.7016 0.3528 0.7015 0.8375
No log 28.0 56 0.6140 0.4792 0.6136 0.7834
No log 29.0 58 0.5970 0.5336 0.5966 0.7724
No log 30.0 60 0.8107 0.3111 0.8109 0.9005
No log 31.0 62 0.8294 0.3002 0.8295 0.9108
No log 32.0 64 0.6166 0.5815 0.6161 0.7849
No log 33.0 66 0.6254 0.5776 0.6249 0.7905
No log 34.0 68 0.7816 0.4265 0.7814 0.8840
No log 35.0 70 0.9633 0.2423 0.9637 0.9817
No log 36.0 72 0.9241 0.3392 0.9242 0.9613
No log 37.0 74 0.7563 0.5070 0.7558 0.8694
No log 38.0 76 0.8426 0.4486 0.8422 0.9177
No log 39.0 78 0.8088 0.5001 0.8083 0.8991
No log 40.0 80 0.8196 0.5160 0.8192 0.9051
No log 41.0 82 0.7739 0.5372 0.7733 0.8794
No log 42.0 84 0.8975 0.4119 0.8971 0.9472
No log 43.0 86 0.9952 0.3978 0.9948 0.9974
No log 44.0 88 0.8762 0.4926 0.8755 0.9357
No log 45.0 90 0.7937 0.5303 0.7930 0.8905
No log 46.0 92 0.8449 0.5272 0.8442 0.9188
No log 47.0 94 1.0401 0.4450 1.0395 1.0196
No log 48.0 96 0.9659 0.4810 0.9652 0.9824
No log 49.0 98 0.8894 0.4873 0.8887 0.9427
No log 50.0 100 0.9761 0.4685 0.9754 0.9876
No log 51.0 102 0.9562 0.4608 0.9557 0.9776
No log 52.0 104 0.8303 0.4868 0.8297 0.9109

Framework versions

  • Transformers 4.47.0
  • Pytorch 2.5.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
2
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for genki10/Version_concise_ASAP_FineTuningBERT_AugV12_k1_task1_organization_k1_k1_fold2

Finetuned
(5807)
this model