Version_concise_ASAP_FineTuningBERT_AugV12_k1_task1_organization_k1_k1_fold2
This model is a fine-tuned version of bert-base-uncased on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.8303
- Qwk: 0.4868
- Mse: 0.8297
- Rmse: 0.9109
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 100
Training results
Training Loss | Epoch | Step | Validation Loss | Qwk | Mse | Rmse |
---|---|---|---|---|---|---|
No log | 1.0 | 2 | 9.3481 | 0.0 | 9.3483 | 3.0575 |
No log | 2.0 | 4 | 7.9430 | 0.0 | 7.9432 | 2.8184 |
No log | 3.0 | 6 | 6.4297 | 0.0 | 6.4299 | 2.5357 |
No log | 4.0 | 8 | 5.2472 | 0.0117 | 5.2475 | 2.2907 |
No log | 5.0 | 10 | 4.2428 | 0.0 | 4.2430 | 2.0599 |
No log | 6.0 | 12 | 3.4794 | 0.0 | 3.4797 | 1.8654 |
No log | 7.0 | 14 | 2.6988 | 0.0 | 2.6991 | 1.6429 |
No log | 8.0 | 16 | 2.1197 | 0.0703 | 2.1200 | 1.4560 |
No log | 9.0 | 18 | 1.9120 | 0.0384 | 1.9124 | 1.3829 |
No log | 10.0 | 20 | 1.5110 | 0.0107 | 1.5114 | 1.2294 |
No log | 11.0 | 22 | 1.4265 | 0.0213 | 1.4270 | 1.1946 |
No log | 12.0 | 24 | 1.1714 | 0.0 | 1.1719 | 1.0825 |
No log | 13.0 | 26 | 1.1856 | 0.0 | 1.1862 | 1.0891 |
No log | 14.0 | 28 | 0.9033 | 0.0399 | 0.9037 | 0.9507 |
No log | 15.0 | 30 | 0.9177 | 0.2425 | 0.9180 | 0.9581 |
No log | 16.0 | 32 | 0.7279 | 0.3720 | 0.7281 | 0.8533 |
No log | 17.0 | 34 | 1.0334 | -0.0926 | 1.0339 | 1.0168 |
No log | 18.0 | 36 | 0.8170 | 0.2037 | 0.8173 | 0.9041 |
No log | 19.0 | 38 | 1.3399 | 0.2230 | 1.3400 | 1.1576 |
No log | 20.0 | 40 | 1.6036 | 0.1848 | 1.6039 | 1.2664 |
No log | 21.0 | 42 | 0.6923 | 0.3811 | 0.6921 | 0.8319 |
No log | 22.0 | 44 | 1.0683 | -0.0312 | 1.0689 | 1.0339 |
No log | 23.0 | 46 | 0.9522 | 0.0764 | 0.9527 | 0.9761 |
No log | 24.0 | 48 | 0.6308 | 0.3460 | 0.6306 | 0.7941 |
No log | 25.0 | 50 | 0.6579 | 0.3673 | 0.6576 | 0.8109 |
No log | 26.0 | 52 | 0.6206 | 0.3796 | 0.6202 | 0.7875 |
No log | 27.0 | 54 | 0.7016 | 0.3528 | 0.7015 | 0.8375 |
No log | 28.0 | 56 | 0.6140 | 0.4792 | 0.6136 | 0.7834 |
No log | 29.0 | 58 | 0.5970 | 0.5336 | 0.5966 | 0.7724 |
No log | 30.0 | 60 | 0.8107 | 0.3111 | 0.8109 | 0.9005 |
No log | 31.0 | 62 | 0.8294 | 0.3002 | 0.8295 | 0.9108 |
No log | 32.0 | 64 | 0.6166 | 0.5815 | 0.6161 | 0.7849 |
No log | 33.0 | 66 | 0.6254 | 0.5776 | 0.6249 | 0.7905 |
No log | 34.0 | 68 | 0.7816 | 0.4265 | 0.7814 | 0.8840 |
No log | 35.0 | 70 | 0.9633 | 0.2423 | 0.9637 | 0.9817 |
No log | 36.0 | 72 | 0.9241 | 0.3392 | 0.9242 | 0.9613 |
No log | 37.0 | 74 | 0.7563 | 0.5070 | 0.7558 | 0.8694 |
No log | 38.0 | 76 | 0.8426 | 0.4486 | 0.8422 | 0.9177 |
No log | 39.0 | 78 | 0.8088 | 0.5001 | 0.8083 | 0.8991 |
No log | 40.0 | 80 | 0.8196 | 0.5160 | 0.8192 | 0.9051 |
No log | 41.0 | 82 | 0.7739 | 0.5372 | 0.7733 | 0.8794 |
No log | 42.0 | 84 | 0.8975 | 0.4119 | 0.8971 | 0.9472 |
No log | 43.0 | 86 | 0.9952 | 0.3978 | 0.9948 | 0.9974 |
No log | 44.0 | 88 | 0.8762 | 0.4926 | 0.8755 | 0.9357 |
No log | 45.0 | 90 | 0.7937 | 0.5303 | 0.7930 | 0.8905 |
No log | 46.0 | 92 | 0.8449 | 0.5272 | 0.8442 | 0.9188 |
No log | 47.0 | 94 | 1.0401 | 0.4450 | 1.0395 | 1.0196 |
No log | 48.0 | 96 | 0.9659 | 0.4810 | 0.9652 | 0.9824 |
No log | 49.0 | 98 | 0.8894 | 0.4873 | 0.8887 | 0.9427 |
No log | 50.0 | 100 | 0.9761 | 0.4685 | 0.9754 | 0.9876 |
No log | 51.0 | 102 | 0.9562 | 0.4608 | 0.9557 | 0.9776 |
No log | 52.0 | 104 | 0.8303 | 0.4868 | 0.8297 | 0.9109 |
Framework versions
- Transformers 4.47.0
- Pytorch 2.5.1+cu121
- Datasets 3.2.0
- Tokenizers 0.21.0
- Downloads last month
- 2
Model tree for genki10/Version_concise_ASAP_FineTuningBERT_AugV12_k1_task1_organization_k1_k1_fold2
Base model
google-bert/bert-base-uncased