Version_concise_ASAP_FineTuningBERT_AugV12_k1_task1_organization_k1_k1_fold1

This model is a fine-tuned version of bert-base-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5914
  • Qwk: 0.6288
  • Mse: 0.5909
  • Rmse: 0.7687

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 100

Training results

Training Loss Epoch Step Validation Loss Qwk Mse Rmse
No log 1.0 2 12.6254 0.0 12.6225 3.5528
No log 2.0 4 11.7677 0.0 11.7650 3.4300
No log 3.0 6 11.2421 -0.0228 11.2395 3.3525
No log 4.0 8 10.5051 0.0 10.5025 3.2408
No log 5.0 10 9.1808 0.0 9.1784 3.0296
No log 6.0 12 7.3316 0.0 7.3293 2.7073
No log 7.0 14 5.4161 0.0342 5.4140 2.3268
No log 8.0 16 4.3836 0.0 4.3816 2.0932
No log 9.0 18 3.2766 0.0 3.2747 1.8096
No log 10.0 20 2.4316 0.0005 2.4298 1.5588
No log 11.0 22 1.7215 0.0211 1.7200 1.3115
No log 12.0 24 1.3203 0.0 1.3189 1.1484
No log 13.0 26 1.2706 0.0 1.2692 1.1266
No log 14.0 28 1.0687 0.0 1.0674 1.0332
No log 15.0 30 0.9480 0.0052 0.9468 0.9730
No log 16.0 32 1.0421 0.0106 1.0408 1.0202
No log 17.0 34 0.9772 0.0211 0.9759 0.9879
No log 18.0 36 0.7763 0.4630 0.7752 0.8804
No log 19.0 38 0.7409 0.4576 0.7399 0.8602
No log 20.0 40 0.7992 0.3732 0.7982 0.8934
No log 21.0 42 0.7297 0.4692 0.7287 0.8536
No log 22.0 44 0.6089 0.5214 0.6080 0.7797
No log 23.0 46 0.5899 0.5293 0.5890 0.7675
No log 24.0 48 0.5768 0.5123 0.5760 0.7589
No log 25.0 50 0.6013 0.4755 0.6004 0.7748
No log 26.0 52 0.6364 0.4036 0.6354 0.7971
No log 27.0 54 0.6726 0.3835 0.6718 0.8196
No log 28.0 56 0.6289 0.4102 0.6281 0.7925
No log 29.0 58 0.5149 0.5001 0.5140 0.7169
No log 30.0 60 0.5054 0.5199 0.5045 0.7103
No log 31.0 62 0.5400 0.5923 0.5393 0.7344
No log 32.0 64 0.5796 0.6189 0.5790 0.7609
No log 33.0 66 0.4992 0.6071 0.4984 0.7060
No log 34.0 68 0.4969 0.6307 0.4961 0.7043
No log 35.0 70 0.6292 0.6071 0.6286 0.7929
No log 36.0 72 0.5141 0.6477 0.5135 0.7166
No log 37.0 74 0.4541 0.6400 0.4533 0.6733
No log 38.0 76 0.4776 0.6232 0.4768 0.6905
No log 39.0 78 0.5928 0.6060 0.5921 0.7695
No log 40.0 80 0.6188 0.6071 0.6181 0.7862
No log 41.0 82 0.5156 0.6358 0.5148 0.7175
No log 42.0 84 0.5825 0.6148 0.5818 0.7628
No log 43.0 86 0.5248 0.6388 0.5241 0.7239
No log 44.0 88 0.4917 0.6545 0.4909 0.7007
No log 45.0 90 0.6324 0.6144 0.6317 0.7948
No log 46.0 92 0.8192 0.5665 0.8186 0.9047
No log 47.0 94 0.7559 0.5951 0.7552 0.8690
No log 48.0 96 0.7117 0.6065 0.7111 0.8433
No log 49.0 98 0.8234 0.5901 0.8228 0.9071
No log 50.0 100 0.5934 0.6326 0.5928 0.7699
No log 51.0 102 0.5456 0.6448 0.5450 0.7382
No log 52.0 104 0.7431 0.6060 0.7426 0.8617
No log 53.0 106 0.7111 0.5980 0.7105 0.8429
No log 54.0 108 0.5804 0.6172 0.5796 0.7613
No log 55.0 110 0.6717 0.5912 0.6711 0.8192
No log 56.0 112 0.8626 0.5524 0.8621 0.9285
No log 57.0 114 0.6684 0.6042 0.6678 0.8172
No log 58.0 116 0.4849 0.6541 0.4841 0.6958
No log 59.0 118 0.4744 0.6535 0.4737 0.6883
No log 60.0 120 0.5376 0.6520 0.5371 0.7329
No log 61.0 122 0.6361 0.6326 0.6356 0.7972
No log 62.0 124 0.6973 0.6139 0.6968 0.8347
No log 63.0 126 0.6606 0.6060 0.6601 0.8124
No log 64.0 128 0.5914 0.6288 0.5909 0.7687

Framework versions

  • Transformers 4.47.0
  • Pytorch 2.5.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
2
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for genki10/Version_concise_ASAP_FineTuningBERT_AugV12_k1_task1_organization_k1_k1_fold1

Finetuned
(5808)
this model