Version_concise_ASAP_FineTuningBERT_AugV12_k1_task1_organization_k1_k1_fold1
This model is a fine-tuned version of bert-base-uncased on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.5914
- Qwk: 0.6288
- Mse: 0.5909
- Rmse: 0.7687
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 100
Training results
Training Loss | Epoch | Step | Validation Loss | Qwk | Mse | Rmse |
---|---|---|---|---|---|---|
No log | 1.0 | 2 | 12.6254 | 0.0 | 12.6225 | 3.5528 |
No log | 2.0 | 4 | 11.7677 | 0.0 | 11.7650 | 3.4300 |
No log | 3.0 | 6 | 11.2421 | -0.0228 | 11.2395 | 3.3525 |
No log | 4.0 | 8 | 10.5051 | 0.0 | 10.5025 | 3.2408 |
No log | 5.0 | 10 | 9.1808 | 0.0 | 9.1784 | 3.0296 |
No log | 6.0 | 12 | 7.3316 | 0.0 | 7.3293 | 2.7073 |
No log | 7.0 | 14 | 5.4161 | 0.0342 | 5.4140 | 2.3268 |
No log | 8.0 | 16 | 4.3836 | 0.0 | 4.3816 | 2.0932 |
No log | 9.0 | 18 | 3.2766 | 0.0 | 3.2747 | 1.8096 |
No log | 10.0 | 20 | 2.4316 | 0.0005 | 2.4298 | 1.5588 |
No log | 11.0 | 22 | 1.7215 | 0.0211 | 1.7200 | 1.3115 |
No log | 12.0 | 24 | 1.3203 | 0.0 | 1.3189 | 1.1484 |
No log | 13.0 | 26 | 1.2706 | 0.0 | 1.2692 | 1.1266 |
No log | 14.0 | 28 | 1.0687 | 0.0 | 1.0674 | 1.0332 |
No log | 15.0 | 30 | 0.9480 | 0.0052 | 0.9468 | 0.9730 |
No log | 16.0 | 32 | 1.0421 | 0.0106 | 1.0408 | 1.0202 |
No log | 17.0 | 34 | 0.9772 | 0.0211 | 0.9759 | 0.9879 |
No log | 18.0 | 36 | 0.7763 | 0.4630 | 0.7752 | 0.8804 |
No log | 19.0 | 38 | 0.7409 | 0.4576 | 0.7399 | 0.8602 |
No log | 20.0 | 40 | 0.7992 | 0.3732 | 0.7982 | 0.8934 |
No log | 21.0 | 42 | 0.7297 | 0.4692 | 0.7287 | 0.8536 |
No log | 22.0 | 44 | 0.6089 | 0.5214 | 0.6080 | 0.7797 |
No log | 23.0 | 46 | 0.5899 | 0.5293 | 0.5890 | 0.7675 |
No log | 24.0 | 48 | 0.5768 | 0.5123 | 0.5760 | 0.7589 |
No log | 25.0 | 50 | 0.6013 | 0.4755 | 0.6004 | 0.7748 |
No log | 26.0 | 52 | 0.6364 | 0.4036 | 0.6354 | 0.7971 |
No log | 27.0 | 54 | 0.6726 | 0.3835 | 0.6718 | 0.8196 |
No log | 28.0 | 56 | 0.6289 | 0.4102 | 0.6281 | 0.7925 |
No log | 29.0 | 58 | 0.5149 | 0.5001 | 0.5140 | 0.7169 |
No log | 30.0 | 60 | 0.5054 | 0.5199 | 0.5045 | 0.7103 |
No log | 31.0 | 62 | 0.5400 | 0.5923 | 0.5393 | 0.7344 |
No log | 32.0 | 64 | 0.5796 | 0.6189 | 0.5790 | 0.7609 |
No log | 33.0 | 66 | 0.4992 | 0.6071 | 0.4984 | 0.7060 |
No log | 34.0 | 68 | 0.4969 | 0.6307 | 0.4961 | 0.7043 |
No log | 35.0 | 70 | 0.6292 | 0.6071 | 0.6286 | 0.7929 |
No log | 36.0 | 72 | 0.5141 | 0.6477 | 0.5135 | 0.7166 |
No log | 37.0 | 74 | 0.4541 | 0.6400 | 0.4533 | 0.6733 |
No log | 38.0 | 76 | 0.4776 | 0.6232 | 0.4768 | 0.6905 |
No log | 39.0 | 78 | 0.5928 | 0.6060 | 0.5921 | 0.7695 |
No log | 40.0 | 80 | 0.6188 | 0.6071 | 0.6181 | 0.7862 |
No log | 41.0 | 82 | 0.5156 | 0.6358 | 0.5148 | 0.7175 |
No log | 42.0 | 84 | 0.5825 | 0.6148 | 0.5818 | 0.7628 |
No log | 43.0 | 86 | 0.5248 | 0.6388 | 0.5241 | 0.7239 |
No log | 44.0 | 88 | 0.4917 | 0.6545 | 0.4909 | 0.7007 |
No log | 45.0 | 90 | 0.6324 | 0.6144 | 0.6317 | 0.7948 |
No log | 46.0 | 92 | 0.8192 | 0.5665 | 0.8186 | 0.9047 |
No log | 47.0 | 94 | 0.7559 | 0.5951 | 0.7552 | 0.8690 |
No log | 48.0 | 96 | 0.7117 | 0.6065 | 0.7111 | 0.8433 |
No log | 49.0 | 98 | 0.8234 | 0.5901 | 0.8228 | 0.9071 |
No log | 50.0 | 100 | 0.5934 | 0.6326 | 0.5928 | 0.7699 |
No log | 51.0 | 102 | 0.5456 | 0.6448 | 0.5450 | 0.7382 |
No log | 52.0 | 104 | 0.7431 | 0.6060 | 0.7426 | 0.8617 |
No log | 53.0 | 106 | 0.7111 | 0.5980 | 0.7105 | 0.8429 |
No log | 54.0 | 108 | 0.5804 | 0.6172 | 0.5796 | 0.7613 |
No log | 55.0 | 110 | 0.6717 | 0.5912 | 0.6711 | 0.8192 |
No log | 56.0 | 112 | 0.8626 | 0.5524 | 0.8621 | 0.9285 |
No log | 57.0 | 114 | 0.6684 | 0.6042 | 0.6678 | 0.8172 |
No log | 58.0 | 116 | 0.4849 | 0.6541 | 0.4841 | 0.6958 |
No log | 59.0 | 118 | 0.4744 | 0.6535 | 0.4737 | 0.6883 |
No log | 60.0 | 120 | 0.5376 | 0.6520 | 0.5371 | 0.7329 |
No log | 61.0 | 122 | 0.6361 | 0.6326 | 0.6356 | 0.7972 |
No log | 62.0 | 124 | 0.6973 | 0.6139 | 0.6968 | 0.8347 |
No log | 63.0 | 126 | 0.6606 | 0.6060 | 0.6601 | 0.8124 |
No log | 64.0 | 128 | 0.5914 | 0.6288 | 0.5909 | 0.7687 |
Framework versions
- Transformers 4.47.0
- Pytorch 2.5.1+cu121
- Datasets 3.2.0
- Tokenizers 0.21.0
- Downloads last month
- 2
Model tree for genki10/Version_concise_ASAP_FineTuningBERT_AugV12_k1_task1_organization_k1_k1_fold1
Base model
google-bert/bert-base-uncased