How to import in PyTorch:
import torch.nn as nn
from huggingface_hub import PyTorchModelHubMixin
from transformers import BertModel, AutoTokenizer
class CustomClassifier(nn.Module, PyTorchModelHubMixin):
def __init__(self, bert, num_labels):
super(CustomClassifier, self).__init__()
self.bert = bert
self.linear38 = nn.Linear(bert.config.hidden_size, 38)
self.dropout38 = nn.Dropout(0.2)
self.linear8 = nn.Linear(38, 8)
self.linear3 = nn.Linear(8, 3)
self.linearOutput = nn.Linear(3, num_labels)
self.sigmoid = nn.Sigmoid()
def forward(self, input_ids, attention_mask):
outputs = self.bert(input_ids=input_ids, attention_mask=attention_mask)
pooled_output = outputs.pooler_output
logits38 = self.linear38(pooled_output)
logits38 = self.dropout38(logits38)
logits8 = self.linear8(logits38)
logits3 = self.linear3(logits8)
logits = self.linearOutput(logits3)
probabilities = self.sigmoid(logits)
return probabilities
bert = BertModel.from_pretrained("indobenchmark/indobert-base-p1",
num_labels=3,
problem_type="multi_label_classification")
tokenizer = AutoTokenizer.from_pretrained("indobenchmark/indobert-base-p1")
model = CustomClassifier.from_pretrained("fahrendrakhoirul/indobert-finetuned-ecommerce-product-reviews-aspect-multilabel", bert=bert)
- Downloads last month
- 4
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support