wav2vec2-large-lv60_phoneme-timit_english_timit-4k_simplified

This model is a fine-tuned version of facebook/wav2vec2-large-lv60 on the TIMIT dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2796
  • Phone Error Rate: 0.0838 (8.38%)

Model description

Trained on a simplified version of the TIMIT phone set.

Intended uses & limitations

Merged Phonemes

  • Based on error analysis for each phoneme from the original TIMIT phoneme set.
  • See this repo for detailed analysis.
  • ax-h β†’ ax
  • axr β†’ er
  • ix β†’ ih
  • ux β†’ uw
  • zh β†’ z
  • em β†’ m
  • en β†’ n
  • eng β†’ ng
  • nx β†’ n
  • hv β†’ hh

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 16
  • eval_batch_size: 1
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 300
  • training_steps: 3000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Phone Error Rate
7.3185 1.04 300 3.6437 0.9617
2.5644 2.08 600 0.7668 0.1559
0.6782 3.11 900 0.3794 0.1231
0.4542 4.15 1200 0.3278 0.1164
0.3834 5.19 1500 0.3043 0.1151
0.3407 6.23 1800 0.2872 0.1119
0.3179 7.27 2100 0.2842 0.1110
0.2988 8.3 2400 0.2834 0.1102
0.2834 9.34 2700 0.2826 0.1100
0.2814 10.38 3000 0.2796 0.1100

Framework versions

  • Transformers 4.38.1
  • Pytorch 2.0.1
  • Datasets 2.16.1
  • Tokenizers 0.15.2
Downloads last month
16
Safetensors
Model size
315M params
Tensor type
F32
Β·
Inference Providers NEW
This model isn't deployed by any Inference Provider. πŸ™‹ Ask for provider support

Model tree for excalibur12/wav2vec2-large-lv60_phoneme-timit_english_timit-4k_simplified

Finetuned
(8)
this model

Dataset used to train excalibur12/wav2vec2-large-lv60_phoneme-timit_english_timit-4k_simplified

Evaluation results