|
--- |
|
license: apache-2.0 |
|
base_model: t5-small |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- rouge |
|
model-index: |
|
- name: results2 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# results2 |
|
|
|
This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.2266 |
|
- Rouge1: 0.2682 |
|
- Rouge2: 0.1194 |
|
- Rougel: 0.2208 |
|
- Rougelsum: 0.221 |
|
- Gen Len: 154.5226 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 10 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |
|
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:--------:| |
|
| 2.6515 | 1.0 | 718 | 1.5195 | 0.0099 | 0.0025 | 0.0087 | 0.0086 | 11.3189 | |
|
| 1.731 | 2.0 | 1436 | 1.3920 | 0.1689 | 0.05 | 0.1367 | 0.1366 | 138.9988 | |
|
| 1.5415 | 3.0 | 2154 | 1.3232 | 0.206 | 0.0601 | 0.1642 | 0.1642 | 153.786 | |
|
| 1.4993 | 4.0 | 2872 | 1.2865 | 0.2082 | 0.0622 | 0.1651 | 0.1651 | 151.953 | |
|
| 1.4502 | 5.0 | 3590 | 1.2640 | 0.2366 | 0.087 | 0.1883 | 0.1884 | 153.7628 | |
|
| 1.4226 | 6.0 | 4308 | 1.2491 | 0.2526 | 0.1083 | 0.2053 | 0.2057 | 154.0902 | |
|
| 1.4175 | 7.0 | 5026 | 1.2385 | 0.2654 | 0.1183 | 0.2168 | 0.2171 | 152.6171 | |
|
| 1.3855 | 8.0 | 5744 | 1.2319 | 0.2661 | 0.118 | 0.2184 | 0.2185 | 153.4085 | |
|
| 1.3956 | 9.0 | 6462 | 1.2279 | 0.2685 | 0.1194 | 0.2207 | 0.2208 | 154.528 | |
|
| 1.3978 | 10.0 | 7180 | 1.2266 | 0.2682 | 0.1194 | 0.2208 | 0.221 | 154.5226 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.35.2 |
|
- Pytorch 2.1.1+cu121 |
|
- Datasets 2.15.0 |
|
- Tokenizers 0.15.0 |
|
|