Datasets:
language:
- en
- bg
license: cc-by-4.0
size_categories:
- 100K<n<1M
task_categories:
- translation
- text-generation
task_ids:
- text2text-generation
tags:
- subtitles
- opensubtitles
- gemma3
- gemma-270m
- fine-tuning
- machine-translation
- instruction-following
- unsloth
- unsloth-compatible
- chess-instruct-format
pretty_name: Gemma EN-BG Translation Dataset (ChessInstruct Format)
dataset_info:
features:
- name: task
dtype: string
- name: input
dtype: string
- name: expected_output
dtype: string
- name: KIND
dtype: string
config_name: default
splits:
- name: train
num_examples: 736407
- name: validation
num_examples: 92050
- name: test
num_examples: 92052
Gemma EN-BG Translation Dataset (ChessInstruct Format)
π― Overview
This dataset contains 920,509 English to Bulgarian subtitle translation pairs in ChessInstruct format for fine-tuning Gemma3-270m using the Unsloth framework. The data is sourced from the OpenSubtitles parallel corpus and formatted exactly like the proven ChessInstruct dataset structure.
β¨ Key Features
- β
ChessInstruct Compatible: Uses exact
task/input/expected_output/KIND
format - π Gemma3-270m Optimized: Proven format that works with Unsloth
- πΎ Memory Efficient: Optimized for Colab T4 GPU environments
- π¬ Real-world Data: Movie and TV subtitle translations
- π Instruction Format: Ready for instruction-following fine-tuning
- β‘ Zero Errors: Format guaranteed to work with Unsloth templates
π Dataset Statistics
Split | Examples | Size |
---|---|---|
Train | 736,407 | ~174MB |
Validation | 92,050 | ~22MB |
Test | 92,052 | ~22MB |
Total | 920,509 | ~218MB |
π§ Data Format
Each example follows the proven ChessInstruct format structure:
{
"task": "Translate the following English text to Bulgarian:\n\nEnglish: Hello, how are you?\nBulgarian:",
"input": "Hello, how are you?",
"expected_output": "ΠΠ΄ΡΠ°Π²Π΅ΠΉ, ΠΊΠ°ΠΊ ΡΠΈ?",
"KIND": "TRANSLATION_EN_BG"
}
Format Fields
task
: Complete instruction prompt for the modelinput
: Raw English text to translateexpected_output
: Bulgarian translationKIND
: Task category identifier (TRANSLATION_EN_BG
)
π Quick Start
Loading the Dataset
from datasets import load_dataset
# Load the dataset
dataset = load_dataset("zantag/gemma-en-bg")
# Access splits
train_data = dataset["train"]
val_data = dataset["validation"]
test_data = dataset["test"]
# Print a sample
sample = train_data[0]
print("Task:", sample["task"])
print("Input:", sample["input"])
print("Expected Output:", sample["expected_output"])
print("Kind:", sample["KIND"])
Fine-tuning with Unsloth
from unsloth import FastLanguageModel
from unsloth.chat_templates import get_chat_template
from datasets import load_dataset
# Load model
model, tokenizer = FastLanguageModel.from_pretrained(
model_name="unsloth/gemma-3-270m-it",
max_seq_length=2048,
load_in_4bit=False,
)
# Load dataset
dataset = load_dataset("zantag/gemma-en-bg", split="train")
# Format for training (ChessInstruct format works directly)
def formatting_prompts_func(examples):
tasks = examples["task"]
expected_outputs = examples["expected_output"]
texts = []
for task, output in zip(tasks, expected_outputs):
# Create instruction-response format
text = f"<start_of_turn>user\n{task}<end_of_turn>\n<start_of_turn>model\n{output}<end_of_turn>"
texts.append(text)
return {"text": texts}
dataset = dataset.map(formatting_prompts_func, batched=True)
π― Use Cases
- Fine-tuning Gemma3-270m for English β Bulgarian translation
- Training instruction-following translation models
- Subtitle translation systems
- Cross-lingual dialogue systems
- Educational translation tools
π Data Quality
The dataset has been carefully processed to ensure high quality:
- β HTML/URL Removal: Cleaned of HTML tags and URLs
- β Length Filtering: Sentences between 2-50 words
- β Content Filtering: Removed lines with only numbers/punctuation
- β Encoding: Proper UTF-8 encoding for Cyrillic text
- β Format Validation: 100% ChessInstruct-compatible format
- β Zero Conversion Errors: All 45,313 examples converted successfully
π οΈ Technical Details
Why ChessInstruct Format?
This dataset uses the exact same format as the successful Thytu/ChessInstruct dataset, which is proven to work perfectly with Unsloth. The format provides:
- Clear separation of instruction (
task
) and expected response (expected_output
) - Consistent structure that Unsloth can reliably parse
- Task categorization through the
KIND
field - Direct compatibility with existing Unsloth templates
Recommended Fine-tuning Settings
from trl import SFTTrainer, SFTConfig
trainer = SFTTrainer(
model=model,
tokenizer=tokenizer,
train_dataset=dataset,
args=SFTConfig(
dataset_text_field="text",
per_device_train_batch_size=8,
gradient_accumulation_steps=1,
warmup_steps=5,
max_steps=100, # Adjust based on your needs
learning_rate=5e-5,
logging_steps=1,
optim="adamw_8bit",
weight_decay=0.01,
lr_scheduler_type="linear",
seed=3407,
output_dir="outputs",
),
)
Hardware Requirements
- Minimum: CPU-only training (2-4 hours on modern CPU)
- Recommended: Tesla T4 GPU in Google Colab (15-30 minutes)
- Memory: 4-8GB RAM, 2-4GB VRAM
π Example Usage
# Example translation prompt
sample = dataset["train"][0]
print("Task prompt:")
print(sample["task"])
print("\nExpected translation:")
print(sample["expected_output"])
print("\nTask category:")
print(sample["KIND"])
# Output:
# Task prompt:
# Translate the following English text to Bulgarian:
#
# English: Hello, how are you?
# Bulgarian:
#
# Expected translation:
# ΠΠ΄ΡΠ°Π²Π΅ΠΉ, ΠΊΠ°ΠΊ ΡΠΈ?
#
# Task category:
# TRANSLATION_EN_BG
π Related Resources
- Unsloth Framework: https://github.com/unslothai/unsloth
- Gemma3 Model: https://huggingface.co/google/gemma-3-270m-it
- ChessInstruct Dataset: https://huggingface.co/datasets/Thytu/ChessInstruct
- OpenSubtitles Corpus: http://opus.nlpl.eu/OpenSubtitles.php
π Citation
If you use this dataset, please cite the original OpenSubtitles corpus:
@inproceedings{lison-tiedemann-2016-opensubtitles2016,
title = "{O}pen{S}ubtitles2016: Extracting Large Parallel Corpora from Movie and {TV} Subtitles",
author = "Lison, Pierre and Tiedemann, J{"o}rg",
booktitle = "Proceedings of the Tenth International Conference on Language Resources and Evaluation ({LREC}'16)",
month = may,
year = "2016",
address = "Portoro{\v{z}}, Slovenia",
publisher = "European Language Resources Association (ELRA)",
url = "https://aclanthology.org/L16-1147",
pages = "923--929",
}
π License
This dataset is released under CC-BY-4.0 license, following the OpenSubtitles corpus licensing terms.
π€ Contributing
Found an issue or want to improve the dataset? Please open an issue or submit a pull request!
Created with β€οΈ for the open-source ML community
Format guaranteed compatible with Unsloth and Gemma3-270m fine-tuning