|
--- |
|
viewer: false |
|
tags: [uv-script, vllm, gpu, inference] |
|
--- |
|
|
|
# vLLM Inference Scripts |
|
|
|
Ready-to-run UV scripts for GPU-accelerated inference using [vLLM](https://github.com/vllm-project/vllm). |
|
|
|
These scripts use [UV's inline script metadata](https://docs.astral.sh/uv/guides/scripts/) to automatically manage dependencies - just run with `uv run` and everything installs automatically! |
|
|
|
## π Available Scripts |
|
|
|
### classify-dataset.py |
|
|
|
Batch text classification using BERT-style encoder models (e.g., BERT, RoBERTa, DeBERTa, ModernBERT) with vLLM's optimized inference engine. |
|
|
|
**Note**: This script is specifically for encoder-only classification models, not generative LLMs. |
|
|
|
**Features:** |
|
- π High-throughput batch processing |
|
- π·οΈ Automatic label mapping from model config |
|
- π Confidence scores for predictions |
|
- π€ Direct integration with Hugging Face Hub |
|
|
|
**Usage:** |
|
```bash |
|
# Local execution (requires GPU) |
|
uv run classify-dataset.py \ |
|
davanstrien/ModernBERT-base-is-new-arxiv-dataset \ |
|
username/input-dataset \ |
|
username/output-dataset \ |
|
--inference-column text \ |
|
--batch-size 10000 |
|
``` |
|
|
|
**HF Jobs execution:** |
|
```bash |
|
hfjobs run \ |
|
--flavor l4x1 \ |
|
--secret HF_TOKEN=$(python -c "from huggingface_hub import HfFolder; print(HfFolder.get_token())") \ |
|
vllm/vllm-openai:latest \ |
|
/bin/bash -c ' |
|
uv run https://huggingface.co/datasets/uv-scripts/vllm/resolve/main/classify-dataset.py \ |
|
davanstrien/ModernBERT-base-is-new-arxiv-dataset \ |
|
username/input-dataset \ |
|
username/output-dataset \ |
|
--inference-column text \ |
|
--batch-size 100000 |
|
' \ |
|
--project vllm-classify \ |
|
--name my-classification-job |
|
``` |
|
|
|
## π― Requirements |
|
|
|
All scripts in this collection require: |
|
- **NVIDIA GPU** with CUDA support |
|
- **Python 3.10+** |
|
- **UV package manager** ([install UV](https://docs.astral.sh/uv/getting-started/installation/)) |
|
|
|
## π Performance Tips |
|
|
|
### GPU Selection |
|
- **L4 GPU** (`--flavor l4x1`): Best value for classification tasks |
|
- **A10 GPU** (`--flavor a10`): Higher memory for larger models |
|
- Adjust batch size based on GPU memory |
|
|
|
### Batch Sizes |
|
- **Local GPUs**: Start with 10,000 and adjust based on memory |
|
- **HF Jobs**: Can use larger batches (50,000-100,000) with cloud GPUs |
|
|
|
## π About vLLM |
|
|
|
vLLM is a high-throughput inference engine optimized for: |
|
- Fast model serving with PagedAttention |
|
- Efficient batch processing |
|
- Support for various model architectures |
|
- Seamless integration with Hugging Face models |
|
|
|
## π§ Technical Details |
|
|
|
### UV Script Benefits |
|
- **Zero setup**: Dependencies install automatically on first run |
|
- **Reproducible**: Locked dependencies ensure consistent behavior |
|
- **Self-contained**: Everything needed is in the script file |
|
- **Direct execution**: Run from local files or URLs |
|
|
|
### Dependencies |
|
Scripts use UV's inline metadata with custom package indexes for vLLM's optimized builds: |
|
```python |
|
# /// script |
|
# requires-python = ">=3.10" |
|
# dependencies = ["vllm", "datasets", "torch", ...] |
|
# |
|
# [[tool.uv.index]] |
|
# url = "https://flashinfer.ai/whl/cu126/torch2.6" |
|
# |
|
# [[tool.uv.index]] |
|
# url = "https://wheels.vllm.ai/nightly" |
|
# /// |
|
``` |
|
|
|
### Docker Image |
|
For HF Jobs, we use the official vLLM Docker image: `vllm/vllm-openai:latest` |
|
|
|
This image includes: |
|
- Pre-installed CUDA libraries |
|
- vLLM and all dependencies |
|
- UV package manager |
|
- Optimized for GPU inference |
|
|
|
## π Contributing |
|
|
|
Have a vLLM script to share? We welcome contributions that: |
|
- Solve real inference problems |
|
- Include clear documentation |
|
- Follow UV script best practices |
|
- Include HF Jobs examples |
|
|
|
## π Resources |
|
|
|
- [vLLM Documentation](https://docs.vllm.ai/) |
|
- [UV Documentation](https://docs.astral.sh/uv/) |
|
- [UV Scripts Organization](https://huggingface.co/uv-scripts) |