Datasets:
The dataset viewer is not available for this split.
Error code: StreamingRowsError Exception: CastError Message: Couldn't cast type: string new_observations: list<item: string> child 0, item: string turn_id: int64 scan_id: string origin_question: string option: list<item: string> child 0, item: string answer: string user_message: string system_prompt: string -- schema metadata -- pandas: '{"index_columns": [], "column_indexes": [], "columns": [{"name":' + 1219 to {'scan_id': Value('string'), 'turn_id': Value('int64'), 'type': Value('string'), 'new_observations': List(Value('string')), 'origin_question': Value('string'), 'option': List(Value('string')), 'answer': Value('string')} because column names don't match Traceback: Traceback (most recent call last): File "/src/services/worker/src/worker/utils.py", line 99, in get_rows_or_raise return get_rows( File "/src/libs/libcommon/src/libcommon/utils.py", line 272, in decorator return func(*args, **kwargs) File "/src/services/worker/src/worker/utils.py", line 77, in get_rows rows_plus_one = list(itertools.islice(ds, rows_max_number + 1)) File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/iterable_dataset.py", line 2361, in __iter__ for key, example in ex_iterable: File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/iterable_dataset.py", line 1882, in __iter__ for key, pa_table in self._iter_arrow(): File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/iterable_dataset.py", line 1914, in _iter_arrow pa_table = cast_table_to_features(pa_table, self.features) File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 2192, in cast_table_to_features raise CastError( datasets.table.CastError: Couldn't cast type: string new_observations: list<item: string> child 0, item: string turn_id: int64 scan_id: string origin_question: string option: list<item: string> child 0, item: string answer: string user_message: string system_prompt: string -- schema metadata -- pandas: '{"index_columns": [], "column_indexes": [], "columns": [{"name":' + 1219 to {'scan_id': Value('string'), 'turn_id': Value('int64'), 'type': Value('string'), 'new_observations': List(Value('string')), 'origin_question': Value('string'), 'option': List(Value('string')), 'answer': Value('string')} because column names don't match
Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.
This page contains the data for the paper "OST-Bench: Evaluating the Capabilities of MLLMs in Online Spatio-temporal Scene Understanding."
π Homepage | π Paper | π» Code | π arXiv
Introduction
Download OST-Bench for evaluation only:
huggingface-cli download rbler/OST-Bench --include OST_bench.json,img.zip --repo-type dataset
Download OST-Bench for both training and evaluation:
huggingface-cli download rbler/OST-Bench --repo-type dataset
Dataset Description
The imgs
/img_train
zipfile contains image data corresponding to 1.4k/7k scenes. Each scene has its own subfolder, which stores the observations captured by the agent while exploring that scene.
OST_bench.json/OST_bench_train.json consists of 10k/50k data samples, where each sample represents one round of Q&A (question and answer) and includes the new observations for that round. The structure of each sample (dictionary) is as follows:
{
"scan_id" (str): Unique identifier for the scene scan,
"system_prompt" (str): Shared context/prompt for the multi-turn conversation,
"turn_id" (int): Index of the current turn in the dialogue,
"type" (str): Question subtype/category,
"origin_question" (str): Original question text,
"answer" (str): Ground-truth answer,
"option" (list[str]): Multiple-choice options,
"new_observations" (list[str]): Relative paths to new observation images (within `imgs` dir),
"user_message" (str): Formatted input prompt for the model,
}
Samples with the same scan_id
belong to the same multi-turn conversation group. During model evaluation, each multi-turn conversation group is processed as a unit: the shared system_prompt
is provided, and new observations along with questions are fed in sequentially according to turn_id
.
Evaluation Instructions
Please refer to our evaluation code for details.
- Downloads last month
- 59