File size: 6,417 Bytes
26c5476 6cc76ec 26c5476 5b30348 26c5476 5b30348 26c5476 5b30348 26c5476 5b30348 26c5476 5b30348 26c5476 5b30348 26c5476 5b30348 26c5476 5b30348 26c5476 5b30348 d964989 5b30348 d964989 d5253c6 5b30348 26c5476 5b30348 26c5476 d5253c6 5b30348 1b4ab5c 5b30348 1b4ab5c 5b30348 26c5476 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 |
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# TODO: Address all TODOs and remove all explanatory comments
"""TODO: Add a description here."""
import csv
import json
import os
import numpy as np
import datasets
from datasets import Value
# TODO: Add BibTeX citation
# Find for instance the citation on arxiv or on the dataset repo/website
_CITATION = """\
@InProceedings{huggingface:dataset,
title = {A great new dataset},
author={huggingface, Inc.
},
year={2020}
}
"""
# TODO: Add description of the dataset here
# You can copy an official description
_DESCRIPTION = """\
This new dataset is designed to solve this great NLP task and is crafted with a lot of care.
"""
# TODO: Add a link to an official homepage for the dataset here
_HOMEPAGE = ""
# TODO: Add the licence for the dataset here if you can find it
_LICENSE = ""
norm_values = {
'B01': {'mean': 0.12478869, 'std': 0.024433358, 'min': 1e-04, 'max': 1.8808, 'p1': 0.0787, 'p99': 0.1946},
'B02': {'mean': 0.13480005, 'std': 0.02822557, 'min': 1e-04, 'max': 2.1776, 'p1': 0.0925, 'p99': 0.2216},
'B03': {'mean': 0.16031432, 'std': 0.032037303, 'min': 1e-04, 'max': 2.12, 'p1': 0.1035, 'p99': 0.2556},
'B04': {'mean': 0.1532097, 'std': 0.038628064, 'min': 1e-04, 'max': 2.0032, 'p1': 0.1023, 'p99': 0.2816},
'B05': {'mean': 0.20312776, 'std': 0.04205057, 'min': 0.0422, 'max': 1.7502, 'p1': 0.1178, 'p99': 0.319},
'B06': {'mean': 0.32636437, 'std': 0.07139242, 'min': 0.0502, 'max': 1.7245, 'p1': 0.1633, 'p99': 0.519},
'B07': {'mean': 0.36605212, 'std': 0.08555025, 'min': 0.0616, 'max': 1.7149, 'p1': 0.1776, 'p99': 0.6076},
'B08': {'mean': 0.3811653, 'std': 0.092815965, 'min': 1e-04, 'max': 1.7488, 'p1': 0.1691, 'p99': 0.646},
'B8A': {'mean': 0.3910436, 'std': 0.0896364, 'min': 0.055, 'max': 1.688, 'p1': 0.1871, 'p99': 0.6386},
'B09': {'mean': 0.3910644, 'std': 0.0836445, 'min': 0.0012, 'max': 1.7915, 'p1': 0.2124, 'p99': 0.6241},
'B11': {'mean': 0.2917373, 'std': 0.07472579, 'min': 0.0953, 'max': 1.648, 'p1': 0.1334, 'p99': 0.4827},
'B12': {'mean': 0.21169408, 'std': 0.05880649, 'min': 0.0975, 'max': 1.6775, 'p1': 0.115, 'p99': 0.3872}}
feature_dtype = {'s2_num_days': Value('int16'),
'gedi_num_days': Value('uint16'),
'lat': Value('float32'),
'lon': Value('float32'),
"agbd_se": Value('float32'),
"elev_lowes": Value('float32'),
"leaf_off_f": Value('uint8'),
"pft_class": Value('uint8'),
"region_cla": Value('uint8'),
"rh98": Value('float32'),
"sensitivity": Value('float32'),
"solar_elev": Value('float32'),
"urban_prop":Value('uint8')}
class NewDataset(datasets.GeneratorBasedBuilder):
def __init__(self, *args, additional_features=[], normalize_data=True, patch_size=15, **kwargs):
self.inner_dataset_kwargs = kwargs
self._is_streaming = False
self.patch_size = patch_size
self.normalize_data = normalize_data
self.additional_features = additional_features
super().__init__(*args, **kwargs)
VERSION = datasets.Version("1.1.0")
BUILDER_CONFIGS = [
datasets.BuilderConfig(name="default", version=VERSION, description="Normalized data"),
datasets.BuilderConfig(name="unnormalized", version=VERSION, description="Unnormalized data"),
]
DEFAULT_CONFIG_NAME = "default"
def as_streaming_dataset(self, split=None, base_path=None):
self._is_streaming = True
return super().as_streaming_dataset(split=split, base_path=base_path)
def _info(self):
all_features = {
'input': datasets.Sequence(datasets.Sequence(datasets.Sequence(datasets.Value('float32')))),
'label': Value('float32')
}
for feat in self.additional_features:
all_features[feat] = feature_dtype[feat]
features = datasets.Features(all_features)
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)
def denormalize_s2(self, patch):
res = []
for band, band_value in zip(['B04', 'B03', 'B02'], [patch[3], patch[2], patch[1]]):
p1, p99 = norm_values[band]['p1'], norm_values[band]['p99']
band_value = (p99 - p1) * band_value + p1
res.append(band_value)
patch[3], patch[2], patch[1] = res
return patch
def _split_generators(self, dl_manager):
self.original_dataset = datasets.load_dataset("prs-eth/AGBD_raw", streaming=self._is_streaming)
return [
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"split": "train"}),
datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"split": "val"}),
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"split": "test"}),
]
def _generate_examples(self, split):
for i, d in enumerate(self.original_dataset[split]):
if self.config.name == "default":
data = {'input': np.asarray(d["input"]), 'label': d["label"]}
elif self.config.name == "unnormalized":
data = {'input': np.asarray(self.denormalize_s2(np.array(d["input"]))), 'label': d["label"]}
start_x = (data["input"].shape[1] - self.patch_size) // 2
start_y = (data["input"].shape[2] - self.patch_size) // 2
data["input"] = data["input"][:, start_x:start_x + self.patch_size, start_y:start_y + self.patch_size]
for feat in self.additional_features:
data[feat] = d["metadata"][feat]
yield i, data
|