Update BioMap.py
Browse files
BioMap.py
CHANGED
@@ -14,14 +14,12 @@
|
|
14 |
# TODO: Address all TODOs and remove all explanatory comments
|
15 |
"""TODO: Add a description here."""
|
16 |
|
17 |
-
|
18 |
import csv
|
19 |
import json
|
20 |
import os
|
21 |
import numpy as np
|
22 |
import datasets
|
23 |
-
|
24 |
-
|
25 |
# TODO: Add BibTeX citation
|
26 |
# Find for instance the citation on arxiv or on the dataset repo/website
|
27 |
_CITATION = """\
|
@@ -45,123 +43,104 @@ _HOMEPAGE = ""
|
|
45 |
# TODO: Add the licence for the dataset here if you can find it
|
46 |
_LICENSE = ""
|
47 |
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
}
|
54 |
-
|
55 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
56 |
|
57 |
-
# TODO: Name of the dataset usually matches the script name with CamelCase instead of snake_case
|
58 |
class NewDataset(datasets.GeneratorBasedBuilder):
|
59 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
60 |
|
61 |
VERSION = datasets.Version("1.1.0")
|
62 |
|
63 |
-
# This is an example of a dataset with multiple configurations.
|
64 |
-
# If you don't want/need to define several sub-sets in your dataset,
|
65 |
-
# just remove the BUILDER_CONFIG_CLASS and the BUILDER_CONFIGS attributes.
|
66 |
-
|
67 |
-
# If you need to make complex sub-parts in the datasets with configurable options
|
68 |
-
# You can create your own builder configuration class to store attribute, inheriting from datasets.BuilderConfig
|
69 |
-
# BUILDER_CONFIG_CLASS = MyBuilderConfig
|
70 |
-
|
71 |
-
# You will be able to load one or the other configurations in the following list with
|
72 |
-
# data = datasets.load_dataset('my_dataset', 'first_domain')
|
73 |
-
# data = datasets.load_dataset('my_dataset', 'second_domain')
|
74 |
-
|
75 |
BUILDER_CONFIGS = [
|
76 |
-
datasets.BuilderConfig(name="default", version=VERSION, description="
|
77 |
-
datasets.BuilderConfig(name="unnormalized", version=VERSION, description="
|
78 |
]
|
79 |
|
80 |
-
DEFAULT_CONFIG_NAME = "default"
|
81 |
-
|
|
|
|
|
|
|
82 |
|
83 |
def _info(self):
|
84 |
-
|
85 |
-
features = datasets.Features({
|
86 |
'input': datasets.Sequence(datasets.Sequence(datasets.Sequence(datasets.Value('float32')))),
|
87 |
-
'label':
|
88 |
-
}
|
|
|
|
|
|
|
89 |
|
90 |
return datasets.DatasetInfo(
|
91 |
-
# This is the description that will appear on the datasets page.
|
92 |
description=_DESCRIPTION,
|
93 |
-
|
94 |
-
features=features, # Here we define them above because they are different between the two configurations
|
95 |
-
# If there's a common (input, target) tuple from the features, uncomment supervised_keys line below and
|
96 |
-
# specify them. They'll be used if as_supervised=True in builder.as_dataset.
|
97 |
-
# supervised_keys=("sentence", "label"),
|
98 |
-
# Homepage of the dataset for documentation
|
99 |
homepage=_HOMEPAGE,
|
100 |
-
# License for the dataset if available
|
101 |
license=_LICENSE,
|
102 |
-
# Citation for the dataset
|
103 |
citation=_CITATION,
|
104 |
)
|
105 |
|
106 |
-
def denormalize_s2(self,patch):
|
107 |
-
r,g,b = patch[3],patch[2],patch[1]
|
108 |
res = []
|
109 |
-
for band, band_value in zip(['B04','B03','B02'],[
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
patch[3],patch[2],patch[1] = res
|
114 |
return patch
|
115 |
-
|
116 |
-
def _split_generators(self, dl_manager):
|
117 |
-
# TODO: This method is tasked with downloading/extracting the data and defining the splits depending on the configuration
|
118 |
-
# If several configurations are possible (listed in BUILDER_CONFIGS), the configuration selected by the user is in self.config.name
|
119 |
-
|
120 |
-
# dl_manager is a datasets.download.DownloadManager that can be used to download and extract URLS
|
121 |
-
# It can accept any type or nested list/dict and will give back the same structure with the url replaced with path to local files.
|
122 |
-
# By default the archives will be extracted and a path to a cached folder where they are extracted is returned instead of the archive
|
123 |
|
|
|
|
|
124 |
return [
|
125 |
-
datasets.SplitGenerator(
|
126 |
-
|
127 |
-
|
128 |
-
gen_kwargs={
|
129 |
-
|
130 |
-
"split": "train",
|
131 |
-
},
|
132 |
-
),
|
133 |
-
datasets.SplitGenerator(
|
134 |
-
name=datasets.Split.VALIDATION,
|
135 |
-
# These kwargs will be passed to _generate_examples
|
136 |
-
gen_kwargs={
|
137 |
-
|
138 |
-
"split": "val",
|
139 |
-
},
|
140 |
-
),
|
141 |
-
datasets.SplitGenerator(
|
142 |
-
name=datasets.Split.TEST,
|
143 |
-
# These kwargs will be passed to _generate_examples
|
144 |
-
gen_kwargs={
|
145 |
-
|
146 |
-
"split": "test"
|
147 |
-
},
|
148 |
-
),
|
149 |
]
|
150 |
|
151 |
-
# method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
|
152 |
def _generate_examples(self, split):
|
153 |
-
for i,d in enumerate(self.
|
154 |
if self.config.name == "default":
|
155 |
-
|
156 |
-
'input': d["input"],
|
157 |
-
'label': d["label"]
|
158 |
-
}
|
159 |
-
|
160 |
elif self.config.name == "unnormalized":
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
|
|
|
|
|
|
|
|
|
|
167 |
|
|
|
14 |
# TODO: Address all TODOs and remove all explanatory comments
|
15 |
"""TODO: Add a description here."""
|
16 |
|
|
|
17 |
import csv
|
18 |
import json
|
19 |
import os
|
20 |
import numpy as np
|
21 |
import datasets
|
22 |
+
from datasets import Value
|
|
|
23 |
# TODO: Add BibTeX citation
|
24 |
# Find for instance the citation on arxiv or on the dataset repo/website
|
25 |
_CITATION = """\
|
|
|
43 |
# TODO: Add the licence for the dataset here if you can find it
|
44 |
_LICENSE = ""
|
45 |
|
46 |
+
norm_values = {
|
47 |
+
'B01': {'mean': 0.12478869, 'std': 0.024433358, 'min': 1e-04, 'max': 1.8808, 'p1': 0.0787, 'p99': 0.1946},
|
48 |
+
'B02': {'mean': 0.13480005, 'std': 0.02822557, 'min': 1e-04, 'max': 2.1776, 'p1': 0.0925, 'p99': 0.2216},
|
49 |
+
'B03': {'mean': 0.16031432, 'std': 0.032037303, 'min': 1e-04, 'max': 2.12, 'p1': 0.1035, 'p99': 0.2556},
|
50 |
+
'B04': {'mean': 0.1532097, 'std': 0.038628064, 'min': 1e-04, 'max': 2.0032, 'p1': 0.1023, 'p99': 0.2816},
|
51 |
+
'B05': {'mean': 0.20312776, 'std': 0.04205057, 'min': 0.0422, 'max': 1.7502, 'p1': 0.1178, 'p99': 0.319},
|
52 |
+
'B06': {'mean': 0.32636437, 'std': 0.07139242, 'min': 0.0502, 'max': 1.7245, 'p1': 0.1633, 'p99': 0.519},
|
53 |
+
'B07': {'mean': 0.36605212, 'std': 0.08555025, 'min': 0.0616, 'max': 1.7149, 'p1': 0.1776, 'p99': 0.6076},
|
54 |
+
'B08': {'mean': 0.3811653, 'std': 0.092815965, 'min': 1e-04, 'max': 1.7488, 'p1': 0.1691, 'p99': 0.646},
|
55 |
+
'B8A': {'mean': 0.3910436, 'std': 0.0896364, 'min': 0.055, 'max': 1.688, 'p1': 0.1871, 'p99': 0.6386},
|
56 |
+
'B09': {'mean': 0.3910644, 'std': 0.0836445, 'min': 0.0012, 'max': 1.7915, 'p1': 0.2124, 'p99': 0.6241},
|
57 |
+
'B11': {'mean': 0.2917373, 'std': 0.07472579, 'min': 0.0953, 'max': 1.648, 'p1': 0.1334, 'p99': 0.4827},
|
58 |
+
'B12': {'mean': 0.21169408, 'std': 0.05880649, 'min': 0.0975, 'max': 1.6775, 'p1': 0.115, 'p99': 0.3872}}
|
59 |
+
|
60 |
+
feature_dtype = {'s2_num_days': Value('int16'),
|
61 |
+
'gedi_num_days': Value('uint16'),
|
62 |
+
'lat': Value('float32'),
|
63 |
+
'lon': Value('float32'),
|
64 |
+
"agbd_se": Value('float32'),
|
65 |
+
"elev_lowes": Value('float32'),
|
66 |
+
"leaf_off_f": Value('uint8'),
|
67 |
+
"pft_class": Value('uint8'),
|
68 |
+
"region_cla": Value('uint8'),
|
69 |
+
"rh98": Value('float32'),
|
70 |
+
"sensitivity": Value('float32'),
|
71 |
+
"solar_elev": Value('float32'),
|
72 |
+
"urban_prop":Value('uint8')}
|
73 |
|
|
|
74 |
class NewDataset(datasets.GeneratorBasedBuilder):
|
75 |
+
def __init__(self, *args, additional_features=[], normalize_data=True, patch_size=15, **kwargs):
|
76 |
+
self.inner_dataset_kwargs = kwargs
|
77 |
+
self._is_streaming = False
|
78 |
+
self.patch_size = patch_size
|
79 |
+
self.normalize_data = normalize_data
|
80 |
+
self.additional_features = additional_features
|
81 |
+
super().__init__(*args, **kwargs)
|
82 |
|
83 |
VERSION = datasets.Version("1.1.0")
|
84 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
85 |
BUILDER_CONFIGS = [
|
86 |
+
datasets.BuilderConfig(name="default", version=VERSION, description="Normalized data"),
|
87 |
+
datasets.BuilderConfig(name="unnormalized", version=VERSION, description="Unnormalized data"),
|
88 |
]
|
89 |
|
90 |
+
DEFAULT_CONFIG_NAME = "default"
|
91 |
+
|
92 |
+
def as_streaming_dataset(self, split=None, base_path=None):
|
93 |
+
self._is_streaming = True
|
94 |
+
return super().as_streaming_dataset(split=split, base_path=base_path)
|
95 |
|
96 |
def _info(self):
|
97 |
+
all_features = {
|
|
|
98 |
'input': datasets.Sequence(datasets.Sequence(datasets.Sequence(datasets.Value('float32')))),
|
99 |
+
'label': Value('float32')
|
100 |
+
}
|
101 |
+
for feat in self.additional_features:
|
102 |
+
all_features[feat] = feature_dtype[feat]
|
103 |
+
features = datasets.Features(all_features)
|
104 |
|
105 |
return datasets.DatasetInfo(
|
|
|
106 |
description=_DESCRIPTION,
|
107 |
+
features=features,
|
|
|
|
|
|
|
|
|
|
|
108 |
homepage=_HOMEPAGE,
|
|
|
109 |
license=_LICENSE,
|
|
|
110 |
citation=_CITATION,
|
111 |
)
|
112 |
|
113 |
+
def denormalize_s2(self, patch):
|
|
|
114 |
res = []
|
115 |
+
for band, band_value in zip(['B04', 'B03', 'B02'], [patch[3], patch[2], patch[1]]):
|
116 |
+
p1, p99 = norm_values[band]['p1'], norm_values[band]['p99']
|
117 |
+
band_value = (p99 - p1) * band_value + p1
|
118 |
+
res.append(band_value)
|
119 |
+
patch[3], patch[2], patch[1] = res
|
120 |
return patch
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
121 |
|
122 |
+
def _split_generators(self, dl_manager):
|
123 |
+
self.original_dataset = datasets.load_dataset("prs-eth/AGBD_raw", streaming=self._is_streaming)
|
124 |
return [
|
125 |
+
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"split": "train"}),
|
126 |
+
datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"split": "val"}),
|
127 |
+
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"split": "test"}),
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
128 |
]
|
129 |
|
|
|
130 |
def _generate_examples(self, split):
|
131 |
+
for i, d in enumerate(self.original_dataset[split]):
|
132 |
if self.config.name == "default":
|
133 |
+
data = {'input': np.asarray(d["input"]), 'label': d["label"]}
|
|
|
|
|
|
|
|
|
134 |
elif self.config.name == "unnormalized":
|
135 |
+
data = {'input': np.asarray(self.denormalize_s2(np.array(d["input"]))), 'label': d["label"]}
|
136 |
+
|
137 |
+
start_x = (data["input"].shape[1] - self.patch_size) // 2
|
138 |
+
start_y = (data["input"].shape[2] - self.patch_size) // 2
|
139 |
+
data["input"] = data["input"][:, start_x:start_x + self.patch_size, start_y:start_y + self.patch_size]
|
140 |
+
|
141 |
+
for feat in self.additional_features:
|
142 |
+
data[feat] = d["metadata"][feat]
|
143 |
+
|
144 |
+
yield i, data
|
145 |
+
|
146 |
|