Datasets:
Tasks:
Image Classification
Modalities:
Image
Formats:
parquet
Languages:
English
Size:
10K - 100K
License:
license: apache-2.0 | |
task_categories: | |
- image-classification | |
language: | |
- en | |
tags: | |
- Buildings and Structures | |
- Desert | |
- Forest Area | |
- Hill or Mountain | |
- Ice Glacier | |
- Sea or Ocean | |
- Street View | |
- Image-Net | |
size_categories: | |
- 10K<n<100K | |
# **Multilabel-GeoSceneNet-16K** | |
**Multilabel-GeoSceneNet-16K** is a geospatial image dataset for **multi-label scene classification**. Each image may belong to one or more geographic scene categories, making it suitable for multi-label learning tasks in remote sensing and geospatial analytics. | |
## Dataset Summary | |
- **Task**: Multi-label Image Classification | |
- **Modalities**: Image | |
- **Total Images**: 16,033 | |
- **Split**: Train (100%) | |
- **Labels**: 7 categories (multi-label) | |
- **License**: Apache-2.0 | |
- **Size**: ~227 MB | |
## Labels | |
Each image may be annotated with one or more of the following scene categories: | |
| Label ID | Class Name | | |
|----------|--------------------------| | |
| 0 | Buildings and Structures | | |
| 1 | Desert | | |
| 2 | Forest Area | | |
| 3 | Hill or Mountain | | |
| 4 | Ice Glacier | | |
| 5 | Sea or Ocean | | |
| 6 | Street View | | |
```py | |
from datasets import load_dataset | |
# Load the dataset | |
dataset = load_dataset("prithivMLmods/Multilabel-GeoSceneNet-16K") | |
# Extract unique labels | |
labels = dataset["train"].features["label"].names | |
# Create id2label mapping | |
id2label = {str(i): label for i, label in enumerate(labels)} | |
# Print the mapping | |
print(id2label) | |
``` | |
``` | |
{'0': 'Buildings and Structures', '1': 'Desert', '2': 'Forest Area', '3': 'Hill or Mountain', '4': 'Ice Glacier', '5': 'Sea or Ocean', '6': 'Street View'} | |
``` | |
## Features | |
| Column | Type | Description | | |
|--------|--------|---------------------------------------------| | |
| image | Image | Image input in JPEG format | | |
| label | List | List of class labels for the given image | | |
## Example | |
| Image | Label(s) | | |
|------------------------------|---------------------------| | |
|  | Buildings and Structures | | |
|  | Forest Area, Hill or Mountain | | |
> Note: For best experience, browse the dataset directly on [Hugging Face](https://huggingface.co/datasets/prithivMLmods/Multilabel-GeoSceneNet-16K). | |
## Usage | |
You can load the dataset using the `datasets` library: | |
```python | |
from datasets import load_dataset | |
dataset = load_dataset("prithivMLmods/Multilabel-GeoSceneNet-16K") | |
``` | |
To visualize an example: | |
```python | |
import matplotlib.pyplot as plt | |
example = dataset['train'][0] | |
plt.imshow(example['image']) | |
plt.title(", ".join(example['label'])) | |
plt.axis('off') | |
plt.show() | |
``` | |
## Applications | |
- Geospatial scene understanding | |
- Remote sensing analytics | |
- Environmental monitoring | |
- Land cover classification | |
- AI-assisted mapping | |
## License | |
This dataset is licensed under the [Apache 2.0 License](https://www.apache.org/licenses/LICENSE-2.0). | |
--- | |
*Curated & Maintained by [@prithivMLmods](https://huggingface.co/prithivMLmods).* |