Datasets:
mteb
/

Modalities:
Text
Formats:
parquet
Languages:
Swedish
ArXiv:
Libraries:
Datasets
pandas
License:
Samoed's picture
Add dataset card
c18592d verified
metadata
annotations_creators:
  - derived
language:
  - swe
license: cc-by-sa-4.0
multilinguality: monolingual
task_categories:
  - text-classification
task_ids:
  - sentiment-analysis
  - sentiment-scoring
  - sentiment-classification
  - hate-speech-detection
dataset_info:
  features:
    - name: text
      dtype: string
    - name: label
      dtype: string
  splits:
    - name: train
      num_bytes: 355633
      num_examples: 1024
    - name: test
      num_bytes: 713970
      num_examples: 2048
    - name: val
      num_bytes: 82442
      num_examples: 256
  download_size: 697285
  dataset_size: 1152045
configs:
  - config_name: default
    data_files:
      - split: train
        path: data/train-*
      - split: test
        path: data/test-*
      - split: val
        path: data/val-*
tags:
  - mteb
  - text

SweRecClassification

An MTEB dataset
Massive Text Embedding Benchmark

A Swedish dataset for sentiment classification on review

Task category t2c
Domains Reviews, Written
Reference https://aclanthology.org/2023.nodalida-1.20/

How to evaluate on this task

You can evaluate an embedding model on this dataset using the following code:

import mteb

task = mteb.get_tasks(["SweRecClassification"])
evaluator = mteb.MTEB(task)

model = mteb.get_model(YOUR_MODEL)
evaluator.run(model)

To learn more about how to run models on mteb task check out the GitHub repitory.

Citation

If you use this dataset, please cite the dataset as well as mteb, as this dataset likely includes additional processing as a part of the MMTEB Contribution.


@inproceedings{nielsen-2023-scandeval,
  address = {T{\'o}rshavn, Faroe Islands},
  author = {Nielsen, Dan},
  booktitle = {Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa)},
  editor = {Alum{\"a}e, Tanel  and
Fishel, Mark},
  month = may,
  pages = {185--201},
  publisher = {University of Tartu Library},
  title = {{S}cand{E}val: A Benchmark for {S}candinavian Natural Language Processing},
  url = {https://aclanthology.org/2023.nodalida-1.20},
  year = {2023},
}


@article{enevoldsen2025mmtebmassivemultilingualtext,
  title={MMTEB: Massive Multilingual Text Embedding Benchmark},
  author={Kenneth Enevoldsen and Isaac Chung and Imene Kerboua and Márton Kardos and Ashwin Mathur and David Stap and Jay Gala and Wissam Siblini and Dominik Krzemiński and Genta Indra Winata and Saba Sturua and Saiteja Utpala and Mathieu Ciancone and Marion Schaeffer and Gabriel Sequeira and Diganta Misra and Shreeya Dhakal and Jonathan Rystrøm and Roman Solomatin and Ömer Çağatan and Akash Kundu and Martin Bernstorff and Shitao Xiao and Akshita Sukhlecha and Bhavish Pahwa and Rafał Poświata and Kranthi Kiran GV and Shawon Ashraf and Daniel Auras and Björn Plüster and Jan Philipp Harries and Loïc Magne and Isabelle Mohr and Mariya Hendriksen and Dawei Zhu and Hippolyte Gisserot-Boukhlef and Tom Aarsen and Jan Kostkan and Konrad Wojtasik and Taemin Lee and Marek Šuppa and Crystina Zhang and Roberta Rocca and Mohammed Hamdy and Andrianos Michail and John Yang and Manuel Faysse and Aleksei Vatolin and Nandan Thakur and Manan Dey and Dipam Vasani and Pranjal Chitale and Simone Tedeschi and Nguyen Tai and Artem Snegirev and Michael Günther and Mengzhou Xia and Weijia Shi and Xing Han Lù and Jordan Clive and Gayatri Krishnakumar and Anna Maksimova and Silvan Wehrli and Maria Tikhonova and Henil Panchal and Aleksandr Abramov and Malte Ostendorff and Zheng Liu and Simon Clematide and Lester James Miranda and Alena Fenogenova and Guangyu Song and Ruqiya Bin Safi and Wen-Ding Li and Alessia Borghini and Federico Cassano and Hongjin Su and Jimmy Lin and Howard Yen and Lasse Hansen and Sara Hooker and Chenghao Xiao and Vaibhav Adlakha and Orion Weller and Siva Reddy and Niklas Muennighoff},
  publisher = {arXiv},
  journal={arXiv preprint arXiv:2502.13595},
  year={2025},
  url={https://arxiv.org/abs/2502.13595},
  doi = {10.48550/arXiv.2502.13595},
}

@article{muennighoff2022mteb,
  author = {Muennighoff, Niklas and Tazi, Nouamane and Magne, Lo{\"\i}c and Reimers, Nils},
  title = {MTEB: Massive Text Embedding Benchmark},
  publisher = {arXiv},
  journal={arXiv preprint arXiv:2210.07316},
  year = {2022}
  url = {https://arxiv.org/abs/2210.07316},
  doi = {10.48550/ARXIV.2210.07316},
}

Dataset Statistics

Dataset Statistics

The following code contains the descriptive statistics from the task. These can also be obtained using:

import mteb

task = mteb.get_task("SweRecClassification")

desc_stats = task.metadata.descriptive_stats
{
    "test": {
        "num_samples": 2048,
        "number_of_characters": 652973,
        "number_texts_intersect_with_train": 0,
        "min_text_length": 12,
        "average_text_length": 318.83447265625,
        "max_text_length": 11715,
        "unique_text": 2048,
        "unique_labels": 3,
        "labels": {
            "negative": {
                "count": 830
            },
            "neutral": {
                "count": 256
            },
            "positive": {
                "count": 962
            }
        }
    },
    "train": {
        "num_samples": 1024,
        "number_of_characters": 325359,
        "number_texts_intersect_with_train": null,
        "min_text_length": 2,
        "average_text_length": 317.7333984375,
        "max_text_length": 3865,
        "unique_text": 1024,
        "unique_labels": 3,
        "labels": {
            "positive": {
                "count": 481
            },
            "negative": {
                "count": 415
            },
            "neutral": {
                "count": 128
            }
        }
    }
}

This dataset card was automatically generated using MTEB