Datasets:
mteb
/

Modalities:
Text
Formats:
parquet
ArXiv:
Libraries:
Datasets
pandas
License:
Samoed's picture
Add dataset card
4e0a511 verified
---
annotations_creators:
- derived
language:
- nob
license: cc-by-nc-4.0
multilinguality: monolingual
task_categories:
- text-classification
task_ids:
- sentiment-analysis
- sentiment-scoring
- sentiment-classification
- hate-speech-detection
dataset_info:
features:
- name: text
dtype: string
- name: label
dtype: string
splits:
- name: train
num_bytes: 106907
num_examples: 1024
- name: test
num_bytes: 219714
num_examples: 2048
- name: val
num_bytes: 25450
num_examples: 256
download_size: 240842
dataset_size: 352071
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
- split: test
path: data/test-*
- split: val
path: data/val-*
tags:
- mteb
- text
---
<!-- adapted from https://github.com/huggingface/huggingface_hub/blob/v0.30.2/src/huggingface_hub/templates/datasetcard_template.md -->
<div align="center" style="padding: 40px 20px; background-color: white; border-radius: 12px; box-shadow: 0 2px 10px rgba(0, 0, 0, 0.05); max-width: 600px; margin: 0 auto;">
<h1 style="font-size: 3.5rem; color: #1a1a1a; margin: 0 0 20px 0; letter-spacing: 2px; font-weight: 700;">NoRecClassification</h1>
<div style="font-size: 1.5rem; color: #4a4a4a; margin-bottom: 5px; font-weight: 300;">An <a href="https://github.com/embeddings-benchmark/mteb" style="color: #2c5282; font-weight: 600; text-decoration: none;" onmouseover="this.style.textDecoration='underline'" onmouseout="this.style.textDecoration='none'">MTEB</a> dataset</div>
<div style="font-size: 0.9rem; color: #2c5282; margin-top: 10px;">Massive Text Embedding Benchmark</div>
</div>
A Norwegian dataset for sentiment classification on review
| | |
|---------------|---------------------------------------------|
| Task category | t2c |
| Domains | Written, Reviews |
| Reference | https://aclanthology.org/L18-1661/ |
## How to evaluate on this task
You can evaluate an embedding model on this dataset using the following code:
```python
import mteb
task = mteb.get_tasks(["NoRecClassification"])
evaluator = mteb.MTEB(task)
model = mteb.get_model(YOUR_MODEL)
evaluator.run(model)
```
<!-- Datasets want link to arxiv in readme to autolink dataset with paper -->
To learn more about how to run models on `mteb` task check out the [GitHub repitory](https://github.com/embeddings-benchmark/mteb).
## Citation
If you use this dataset, please cite the dataset as well as [mteb](https://github.com/embeddings-benchmark/mteb), as this dataset likely includes additional processing as a part of the [MMTEB Contribution](https://github.com/embeddings-benchmark/mteb/tree/main/docs/mmteb).
```bibtex
@inproceedings{velldal-etal-2018-norec,
address = {Miyazaki, Japan},
author = {Velldal, Erik and
{\\O}vrelid, Lilja and
Bergem, Eivind Alexander and
Stadsnes, Cathrine and
Touileb, Samia and
J{\\o}rgensen, Fredrik},
booktitle = {Proceedings of the Eleventh International Conference on Language Resources and Evaluation ({LREC} 2018)},
editor = {Calzolari, Nicoletta and
Choukri, Khalid and
Cieri, Christopher and
Declerck, Thierry and
Goggi, Sara and
Hasida, Koiti and
Isahara, Hitoshi and
Maegaard, Bente and
Mariani, Joseph and
Mazo, H{\\'e}l{\\`e}ne and
Moreno, Asuncion and
Odijk, Jan and
Piperidis, Stelios and
Tokunaga, Takenobu},
month = may,
publisher = {European Language Resources Association (ELRA)},
title = {{N}o{R}e{C}: The {N}orwegian Review Corpus},
url = {https://aclanthology.org/L18-1661},
year = {2018},
}
@article{enevoldsen2025mmtebmassivemultilingualtext,
title={MMTEB: Massive Multilingual Text Embedding Benchmark},
author={Kenneth Enevoldsen and Isaac Chung and Imene Kerboua and Márton Kardos and Ashwin Mathur and David Stap and Jay Gala and Wissam Siblini and Dominik Krzemiński and Genta Indra Winata and Saba Sturua and Saiteja Utpala and Mathieu Ciancone and Marion Schaeffer and Gabriel Sequeira and Diganta Misra and Shreeya Dhakal and Jonathan Rystrøm and Roman Solomatin and Ömer Çağatan and Akash Kundu and Martin Bernstorff and Shitao Xiao and Akshita Sukhlecha and Bhavish Pahwa and Rafał Poświata and Kranthi Kiran GV and Shawon Ashraf and Daniel Auras and Björn Plüster and Jan Philipp Harries and Loïc Magne and Isabelle Mohr and Mariya Hendriksen and Dawei Zhu and Hippolyte Gisserot-Boukhlef and Tom Aarsen and Jan Kostkan and Konrad Wojtasik and Taemin Lee and Marek Šuppa and Crystina Zhang and Roberta Rocca and Mohammed Hamdy and Andrianos Michail and John Yang and Manuel Faysse and Aleksei Vatolin and Nandan Thakur and Manan Dey and Dipam Vasani and Pranjal Chitale and Simone Tedeschi and Nguyen Tai and Artem Snegirev and Michael Günther and Mengzhou Xia and Weijia Shi and Xing Han Lù and Jordan Clive and Gayatri Krishnakumar and Anna Maksimova and Silvan Wehrli and Maria Tikhonova and Henil Panchal and Aleksandr Abramov and Malte Ostendorff and Zheng Liu and Simon Clematide and Lester James Miranda and Alena Fenogenova and Guangyu Song and Ruqiya Bin Safi and Wen-Ding Li and Alessia Borghini and Federico Cassano and Hongjin Su and Jimmy Lin and Howard Yen and Lasse Hansen and Sara Hooker and Chenghao Xiao and Vaibhav Adlakha and Orion Weller and Siva Reddy and Niklas Muennighoff},
publisher = {arXiv},
journal={arXiv preprint arXiv:2502.13595},
year={2025},
url={https://arxiv.org/abs/2502.13595},
doi = {10.48550/arXiv.2502.13595},
}
@article{muennighoff2022mteb,
author = {Muennighoff, Niklas and Tazi, Nouamane and Magne, Lo{\"\i}c and Reimers, Nils},
title = {MTEB: Massive Text Embedding Benchmark},
publisher = {arXiv},
journal={arXiv preprint arXiv:2210.07316},
year = {2022}
url = {https://arxiv.org/abs/2210.07316},
doi = {10.48550/ARXIV.2210.07316},
}
```
# Dataset Statistics
<details>
<summary> Dataset Statistics</summary>
The following code contains the descriptive statistics from the task. These can also be obtained using:
```python
import mteb
task = mteb.get_task("NoRecClassification")
desc_stats = task.metadata.descriptive_stats
```
```json
{
"test": {
"num_samples": 2048,
"number_of_characters": 183540,
"number_texts_intersect_with_train": 1,
"min_text_length": 2,
"average_text_length": 89.619140625,
"max_text_length": 417,
"unique_text": 2048,
"unique_labels": 3,
"labels": {
"positive": {
"count": 715
},
"neutral": {
"count": 998
},
"negative": {
"count": 335
}
}
},
"train": {
"num_samples": 1024,
"number_of_characters": 88991,
"number_texts_intersect_with_train": null,
"min_text_length": 1,
"average_text_length": 86.9052734375,
"max_text_length": 397,
"unique_text": 1024,
"unique_labels": 3,
"labels": {
"neutral": {
"count": 544
},
"positive": {
"count": 330
},
"negative": {
"count": 150
}
}
}
}
```
</details>
---
*This dataset card was automatically generated using [MTEB](https://github.com/embeddings-benchmark/mteb)*