Datasets:
Dataset Viewer
functionality
stringclasses 36
values | text
stringlengths 1
135
| is_hateful
stringclasses 2
values | lang
stringclasses 11
values |
---|---|---|---|
derog_neg_emote_h | انا بكره النساء. | hateful | ara |
derog_neg_emote_h | انا بكره المتحولين جنسيا. | hateful | ara |
derog_neg_emote_h | انا بكره المثلين. | hateful | ara |
derog_neg_emote_h | انا بكره السود. | hateful | ara |
derog_neg_emote_h | انا بكره اليهود. | hateful | ara |
derog_neg_emote_h | انا بكره المعاقيين. | hateful | ara |
derog_neg_emote_h | انا بكره اللاجئين. | hateful | ara |
derog_neg_emote_h | انا ما بطقش النساء الي زيك. | hateful | ara |
derog_neg_emote_h | انا ما بطقش المتحولين جنسيا الي زيك. | hateful | ara |
derog_neg_emote_h | انا ما بطقش المثلين الي زيك. | hateful | ara |
derog_neg_emote_h | انا ما بطقش السود الي زيك. | hateful | ara |
derog_neg_emote_h | انا ما بطقش اليهود الي زيك. | hateful | ara |
derog_neg_emote_h | انا ما بطقش المعاقيين الي زيك. | hateful | ara |
derog_neg_emote_h | انا ما بطقش اللاجئين الي زيك. | hateful | ara |
derog_neg_emote_h | انا بستحقر النساء. | hateful | ara |
derog_neg_emote_h | انا بستحقر المتحولين جنسيا. | hateful | ara |
derog_neg_emote_h | انا بستحقر المثلين. | hateful | ara |
derog_neg_emote_h | انا بستحقر السود. | hateful | ara |
derog_neg_emote_h | انا بستحقر اليهود. | hateful | ara |
derog_neg_emote_h | انا بستحقر المعاقيين. | hateful | ara |
derog_neg_emote_h | انا بستحقر اللاجئين. | hateful | ara |
derog_neg_emote_h | انا بمقت النساء. | hateful | ara |
derog_neg_emote_h | انا بمقت المتحولين جنسيا. | hateful | ara |
derog_neg_emote_h | انا بمقت المثلين. | hateful | ara |
derog_neg_emote_h | انا بمقت السود. | hateful | ara |
derog_neg_emote_h | انا بمقت اليهود. | hateful | ara |
derog_neg_emote_h | انا بمقت المعاقيين. | hateful | ara |
derog_neg_emote_h | انا بمقت اللاجئين. | hateful | ara |
derog_neg_emote_h | انا بكره النساء خالص. | hateful | ara |
derog_neg_emote_h | انا بكره المتحولين جنسيا خالص. | hateful | ara |
derog_neg_emote_h | انا بكره المثلين خالص. | hateful | ara |
derog_neg_emote_h | انا بكره السود خالص. | hateful | ara |
derog_neg_emote_h | انا بكره اليهود خالص. | hateful | ara |
derog_neg_emote_h | انا بكره المعاقيين خالص. | hateful | ara |
derog_neg_emote_h | انا بكره اللاجئين خالص. | hateful | ara |
derog_neg_emote_h | انا بتقرف من كل النساء الي هنا. | hateful | ara |
derog_neg_emote_h | انا بتقرف من كل المتحولين جنسيا الي هنا. | hateful | ara |
derog_neg_emote_h | انا بتقرف من كل المثلين الي هنا. | hateful | ara |
derog_neg_emote_h | انا بتقرف من كل السود الي هنا. | hateful | ara |
derog_neg_emote_h | انا بتقرف من كل اليهود الي هنا. | hateful | ara |
derog_neg_emote_h | انا بتقرف من كل المعاقيين الي هنا. | hateful | ara |
derog_neg_emote_h | انا بتقرف من كل اللاجئين الي هنا. | hateful | ara |
derog_neg_emote_h | انا بتقرف اوي من النساء دول. | hateful | ara |
derog_neg_emote_h | انا بتقرف اوي من المتحولين جنسيا دول. | hateful | ara |
derog_neg_emote_h | انا بتقرف اوي من المثلين دول. | hateful | ara |
derog_neg_emote_h | انا بتقرف اوي من السود دول. | hateful | ara |
derog_neg_emote_h | انا بتقرف اوي من اليهود دول. | hateful | ara |
derog_neg_emote_h | انا بتقرف اوي من المعاقيين دول. | hateful | ara |
derog_neg_emote_h | انا بتقرف اوي من اللاجئين دول. | hateful | ara |
derog_neg_emote_h | انا بكرهكم خالص يا نساء. | hateful | ara |
derog_neg_emote_h | انا بكرهكم خالص يا متحولين جنسيا. | hateful | ara |
derog_neg_emote_h | انا بكرهكم خالص يا مثلين. | hateful | ara |
derog_neg_emote_h | انا بكرهكم خالص يا سود. | hateful | ara |
derog_neg_emote_h | انا بكرهكم خالص يا يهود. | hateful | ara |
derog_neg_emote_h | انا بكرهكم خالص يا معاقيين. | hateful | ara |
derog_neg_emote_h | انا بكرهكم خالص يا لاجئين. | hateful | ara |
derog_neg_emote_h | انا زهقت من النساء متلك حوليا. | hateful | ara |
derog_neg_emote_h | انا زهقت من المتحولين جنسيا متلك حوليا. | hateful | ara |
derog_neg_emote_h | انا زهقت من المثلين متلك حوليا. | hateful | ara |
derog_neg_emote_h | انا زهقت من السود متلك حوليا. | hateful | ara |
derog_neg_emote_h | انا زهقت من اليهود متلك حوليا. | hateful | ara |
derog_neg_emote_h | انا زهقت من المعاقيين متلك حوليا. | hateful | ara |
derog_neg_emote_h | انا زهقت من اللاجئين متلك حوليا. | hateful | ara |
derog_neg_emote_h | ما بحسش بحاجة تجاه النساء غير الاستحقار. | hateful | ara |
derog_neg_emote_h | ما بحسش بحاجة تجاه المتحولين جنسيا غير الاستحقار. | hateful | ara |
derog_neg_emote_h | ما بحسش بحاجة تجاه المثلين غير الاستحقار. | hateful | ara |
derog_neg_emote_h | ما بحسش بحاجة تجاه السود غير الاستحقار. | hateful | ara |
derog_neg_emote_h | ما بحسش بحاجة تجاه اليهود غير الاستحقار. | hateful | ara |
derog_neg_emote_h | ما بحسش بحاجة تجاه المعاقيين غير الاستحقار. | hateful | ara |
derog_neg_emote_h | ما بحسش بحاجة تجاه اللاجئين غير الاستحقار. | hateful | ara |
derog_neg_emote_h | النساء دول بيقرفوني. | hateful | ara |
derog_neg_emote_h | المتحولين جنسيا دول بيقرفوني. | hateful | ara |
derog_neg_emote_h | المثلين دول بيقرفوني. | hateful | ara |
derog_neg_emote_h | السود دول بيقرفوني. | hateful | ara |
derog_neg_emote_h | اليهود دول بيقرفوني. | hateful | ara |
derog_neg_emote_h | المعاقيين دول بيقرفوني. | hateful | ara |
derog_neg_emote_h | اللاجئين دول بيقرفوني. | hateful | ara |
derog_neg_emote_h | النساء اسواء حاجة. | hateful | ara |
derog_neg_emote_h | المتحولين جنسيا اسواء حاجة. | hateful | ara |
derog_neg_emote_h | المثلين اسواء حاجة. | hateful | ara |
derog_neg_emote_h | السود اسواء حاجة. | hateful | ara |
derog_neg_emote_h | اليهود اسواء حاجة. | hateful | ara |
derog_neg_emote_h | المعاقيين اسواء حاجة. | hateful | ara |
derog_neg_emote_h | اللاجئين اسواء حاجة. | hateful | ara |
derog_neg_emote_h | انتو يا نساء بتقرفوني. | hateful | ara |
derog_neg_emote_h | انتو يا متحولين جنسيا بتقرفوني. | hateful | ara |
derog_neg_emote_h | انتو يا مثلين بتقرفوني. | hateful | ara |
derog_neg_emote_h | انتو يا سود بتقرفوني. | hateful | ara |
derog_neg_emote_h | انتو يا يهود بتقرفوني. | hateful | ara |
derog_neg_emote_h | انتو يا معاقيين بتقرفوني. | hateful | ara |
derog_neg_emote_h | انتو يا لاجئين بتقرفوني. | hateful | ara |
derog_neg_emote_h | ما فيش حاجة اسواء من المرأة. | hateful | ara |
derog_neg_emote_h | ما فيش حاجة اسواء من المتحول جنسيا. | hateful | ara |
derog_neg_emote_h | ما فيش حاجة اسواء من المثلي. | hateful | ara |
derog_neg_emote_h | ما فيش حاجة اسواء من الاسود. | hateful | ara |
derog_neg_emote_h | ما فيش حاجة اسواء من اليهودي. | hateful | ara |
derog_neg_emote_h | ما فيش حاجة اسواء من المعاق. | hateful | ara |
derog_neg_emote_h | ما فيش حاجة اسواء من اللاجئ. | hateful | ara |
derog_neg_emote_h | مناظر النساء في المكان دا بتعصبني. | hateful | ara |
derog_neg_emote_h | مناظر المتحولين جنسيا في المكان دا بتعصبني. | hateful | ara |
End of preview. Expand
in Data Studio
Hate speech detection dataset with binary (hateful vs non-hateful) labels. Includes 25+ distinct types of hate and challenging non-hate, and 11 languages.
Task category | t2c |
Domains | Constructed, Written |
Reference | https://aclanthology.org/2022.woah-1.15/ |
How to evaluate on this task
You can evaluate an embedding model on this dataset using the following code:
import mteb
task = mteb.get_tasks(["MultiHateClassification"])
evaluator = mteb.MTEB(task)
model = mteb.get_model(YOUR_MODEL)
evaluator.run(model)
To learn more about how to run models on mteb
task check out the GitHub repitory.
Citation
If you use this dataset, please cite the dataset as well as mteb, as this dataset likely includes additional processing as a part of the MMTEB Contribution.
@inproceedings{rottger-etal-2021-hatecheck,
abstract = {Detecting online hate is a difficult task that even state-of-the-art models struggle with. Typically, hate speech detection models are evaluated by measuring their performance on held-out test data using metrics such as accuracy and F1 score. However, this approach makes it difficult to identify specific model weak points. It also risks overestimating generalisable model performance due to increasingly well-evidenced systematic gaps and biases in hate speech datasets. To enable more targeted diagnostic insights, we introduce HateCheck, a suite of functional tests for hate speech detection models. We specify 29 model functionalities motivated by a review of previous research and a series of interviews with civil society stakeholders. We craft test cases for each functionality and validate their quality through a structured annotation process. To illustrate HateCheck{'}s utility, we test near-state-of-the-art transformer models as well as two popular commercial models, revealing critical model weaknesses.},
address = {Online},
author = {R{\"o}ttger, Paul and
Vidgen, Bertie and
Nguyen, Dong and
Waseem, Zeerak and
Margetts, Helen and
Pierrehumbert, Janet},
booktitle = {Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)},
doi = {10.18653/v1/2021.acl-long.4},
editor = {Zong, Chengqing and
Xia, Fei and
Li, Wenjie and
Navigli, Roberto},
month = aug,
pages = {41--58},
publisher = {Association for Computational Linguistics},
title = {{H}ate{C}heck: Functional Tests for Hate Speech Detection Models},
url = {https://aclanthology.org/2021.acl-long.4},
year = {2021},
}
@inproceedings{rottger-etal-2022-multilingual,
abstract = {Hate speech detection models are typically evaluated on held-out test sets. However, this risks painting an incomplete and potentially misleading picture of model performance because of increasingly well-documented systematic gaps and biases in hate speech datasets. To enable more targeted diagnostic insights, recent research has thus introduced functional tests for hate speech detection models. However, these tests currently only exist for English-language content, which means that they cannot support the development of more effective models in other languages spoken by billions across the world. To help address this issue, we introduce Multilingual HateCheck (MHC), a suite of functional tests for multilingual hate speech detection models. MHC covers 34 functionalities across ten languages, which is more languages than any other hate speech dataset. To illustrate MHC{'}s utility, we train and test a high-performing multilingual hate speech detection model, and reveal critical model weaknesses for monolingual and cross-lingual applications.},
address = {Seattle, Washington (Hybrid)},
author = {R{\"o}ttger, Paul and
Seelawi, Haitham and
Nozza, Debora and
Talat, Zeerak and
Vidgen, Bertie},
booktitle = {Proceedings of the Sixth Workshop on Online Abuse and Harms (WOAH)},
doi = {10.18653/v1/2022.woah-1.15},
editor = {Narang, Kanika and
Mostafazadeh Davani, Aida and
Mathias, Lambert and
Vidgen, Bertie and
Talat, Zeerak},
month = jul,
pages = {154--169},
publisher = {Association for Computational Linguistics},
title = {Multilingual {H}ate{C}heck: Functional Tests for Multilingual Hate Speech Detection Models},
url = {https://aclanthology.org/2022.woah-1.15},
year = {2022},
}
@article{enevoldsen2025mmtebmassivemultilingualtext,
title={MMTEB: Massive Multilingual Text Embedding Benchmark},
author={Kenneth Enevoldsen and Isaac Chung and Imene Kerboua and Márton Kardos and Ashwin Mathur and David Stap and Jay Gala and Wissam Siblini and Dominik Krzemiński and Genta Indra Winata and Saba Sturua and Saiteja Utpala and Mathieu Ciancone and Marion Schaeffer and Gabriel Sequeira and Diganta Misra and Shreeya Dhakal and Jonathan Rystrøm and Roman Solomatin and Ömer Çağatan and Akash Kundu and Martin Bernstorff and Shitao Xiao and Akshita Sukhlecha and Bhavish Pahwa and Rafał Poświata and Kranthi Kiran GV and Shawon Ashraf and Daniel Auras and Björn Plüster and Jan Philipp Harries and Loïc Magne and Isabelle Mohr and Mariya Hendriksen and Dawei Zhu and Hippolyte Gisserot-Boukhlef and Tom Aarsen and Jan Kostkan and Konrad Wojtasik and Taemin Lee and Marek Šuppa and Crystina Zhang and Roberta Rocca and Mohammed Hamdy and Andrianos Michail and John Yang and Manuel Faysse and Aleksei Vatolin and Nandan Thakur and Manan Dey and Dipam Vasani and Pranjal Chitale and Simone Tedeschi and Nguyen Tai and Artem Snegirev and Michael Günther and Mengzhou Xia and Weijia Shi and Xing Han Lù and Jordan Clive and Gayatri Krishnakumar and Anna Maksimova and Silvan Wehrli and Maria Tikhonova and Henil Panchal and Aleksandr Abramov and Malte Ostendorff and Zheng Liu and Simon Clematide and Lester James Miranda and Alena Fenogenova and Guangyu Song and Ruqiya Bin Safi and Wen-Ding Li and Alessia Borghini and Federico Cassano and Hongjin Su and Jimmy Lin and Howard Yen and Lasse Hansen and Sara Hooker and Chenghao Xiao and Vaibhav Adlakha and Orion Weller and Siva Reddy and Niklas Muennighoff},
publisher = {arXiv},
journal={arXiv preprint arXiv:2502.13595},
year={2025},
url={https://arxiv.org/abs/2502.13595},
doi = {10.48550/arXiv.2502.13595},
}
@article{muennighoff2022mteb,
author = {Muennighoff, Niklas and Tazi, Nouamane and Magne, Lo{\"\i}c and Reimers, Nils},
title = {MTEB: Massive Text Embedding Benchmark},
publisher = {arXiv},
journal={arXiv preprint arXiv:2210.07316},
year = {2022}
url = {https://arxiv.org/abs/2210.07316},
doi = {10.48550/ARXIV.2210.07316},
}
Dataset Statistics
Dataset Statistics
The following code contains the descriptive statistics from the task. These can also be obtained using:
import mteb
task = mteb.get_task("MultiHateClassification")
desc_stats = task.metadata.descriptive_stats
{
"test": {
"num_samples": 11000,
"number_of_characters": 502013,
"number_texts_intersect_with_train": 16,
"min_text_length": 1,
"average_text_length": 45.63754545454545,
"max_text_length": 135,
"unique_text": 10990,
"unique_labels": 2,
"labels": {
"0": {
"count": 7661
},
"1": {
"count": 3339
}
}
},
"train": {
"num_samples": 11000,
"number_of_characters": 505993,
"number_texts_intersect_with_train": null,
"min_text_length": 4,
"average_text_length": 45.99936363636364,
"max_text_length": 131,
"unique_text": 10993,
"unique_labels": 2,
"labels": {
"0": {
"count": 7659
},
"1": {
"count": 3341
}
}
}
}
This dataset card was automatically generated using MTEB
- Downloads last month
- 63