Datasets:
mteb
/

Modalities:
Text
Formats:
parquet
Languages:
English
ArXiv:
Libraries:
Datasets
Dask
License:
amazon_polarity / README.md
Samoed's picture
Add dataset card
391892f verified
metadata
annotations_creators:
  - derived
language:
  - eng
license: apache-2.0
multilinguality: monolingual
task_categories:
  - text-classification
task_ids:
  - sentiment-analysis
  - sentiment-scoring
  - sentiment-classification
  - hate-speech-detection
tags:
  - mteb
  - text
configs:
  - config_name: default
    data_files:
      - split: train
        path: data/train-*
      - split: test
        path: data/test-*
dataset_info:
  features:
    - name: text
      dtype: string
    - name: label
      dtype: int64
  splits:
    - name: train
      num_bytes: 1597164432
      num_examples: 3600000
    - name: test
      num_bytes: 177376193
      num_examples: 400000
  download_size: 1123838521
  dataset_size: 1774540625

AmazonPolarityClassification

An MTEB dataset
Massive Text Embedding Benchmark

Amazon Polarity Classification Dataset.

Task category t2c
Domains Reviews, Written
Reference https://huggingface.co/datasets/amazon_polarity

How to evaluate on this task

You can evaluate an embedding model on this dataset using the following code:

import mteb

task = mteb.get_tasks(["AmazonPolarityClassification"])
evaluator = mteb.MTEB(task)

model = mteb.get_model(YOUR_MODEL)
evaluator.run(model)

To learn more about how to run models on mteb task check out the GitHub repitory.

Citation

If you use this dataset, please cite the dataset as well as mteb, as this dataset likely includes additional processing as a part of the MMTEB Contribution.


@article{McAuley2013HiddenFA,
  author = {Julian McAuley and Jure Leskovec},
  journal = {Proceedings of the 7th ACM conference on Recommender systems},
  title = {Hidden factors and hidden topics: understanding rating dimensions with review text},
  url = {https://api.semanticscholar.org/CorpusID:6440341},
  year = {2013},
}


@article{enevoldsen2025mmtebmassivemultilingualtext,
  title={MMTEB: Massive Multilingual Text Embedding Benchmark},
  author={Kenneth Enevoldsen and Isaac Chung and Imene Kerboua and Márton Kardos and Ashwin Mathur and David Stap and Jay Gala and Wissam Siblini and Dominik Krzemiński and Genta Indra Winata and Saba Sturua and Saiteja Utpala and Mathieu Ciancone and Marion Schaeffer and Gabriel Sequeira and Diganta Misra and Shreeya Dhakal and Jonathan Rystrøm and Roman Solomatin and Ömer Çağatan and Akash Kundu and Martin Bernstorff and Shitao Xiao and Akshita Sukhlecha and Bhavish Pahwa and Rafał Poświata and Kranthi Kiran GV and Shawon Ashraf and Daniel Auras and Björn Plüster and Jan Philipp Harries and Loïc Magne and Isabelle Mohr and Mariya Hendriksen and Dawei Zhu and Hippolyte Gisserot-Boukhlef and Tom Aarsen and Jan Kostkan and Konrad Wojtasik and Taemin Lee and Marek Šuppa and Crystina Zhang and Roberta Rocca and Mohammed Hamdy and Andrianos Michail and John Yang and Manuel Faysse and Aleksei Vatolin and Nandan Thakur and Manan Dey and Dipam Vasani and Pranjal Chitale and Simone Tedeschi and Nguyen Tai and Artem Snegirev and Michael Günther and Mengzhou Xia and Weijia Shi and Xing Han Lù and Jordan Clive and Gayatri Krishnakumar and Anna Maksimova and Silvan Wehrli and Maria Tikhonova and Henil Panchal and Aleksandr Abramov and Malte Ostendorff and Zheng Liu and Simon Clematide and Lester James Miranda and Alena Fenogenova and Guangyu Song and Ruqiya Bin Safi and Wen-Ding Li and Alessia Borghini and Federico Cassano and Hongjin Su and Jimmy Lin and Howard Yen and Lasse Hansen and Sara Hooker and Chenghao Xiao and Vaibhav Adlakha and Orion Weller and Siva Reddy and Niklas Muennighoff},
  publisher = {arXiv},
  journal={arXiv preprint arXiv:2502.13595},
  year={2025},
  url={https://arxiv.org/abs/2502.13595},
  doi = {10.48550/arXiv.2502.13595},
}

@article{muennighoff2022mteb,
  author = {Muennighoff, Niklas and Tazi, Nouamane and Magne, Lo{\"\i}c and Reimers, Nils},
  title = {MTEB: Massive Text Embedding Benchmark},
  publisher = {arXiv},
  journal={arXiv preprint arXiv:2210.07316},
  year = {2022}
  url = {https://arxiv.org/abs/2210.07316},
  doi = {10.48550/ARXIV.2210.07316},
}

Dataset Statistics

Dataset Statistics

The following code contains the descriptive statistics from the task. These can also be obtained using:

import mteb

task = mteb.get_task("AmazonPolarityClassification")

desc_stats = task.metadata.descriptive_stats
{
    "test": {
        "num_samples": 400000,
        "number_of_characters": 172571852,
        "number_texts_intersect_with_train": 0,
        "min_text_length": 99,
        "average_text_length": 431.42963,
        "max_text_length": 1015,
        "unique_text": 400000,
        "unique_labels": 2,
        "labels": {
            "1": {
                "count": 200000
            },
            "0": {
                "count": 200000
            }
        }
    },
    "train": {
        "num_samples": 3600000,
        "number_of_characters": 1553926733,
        "number_texts_intersect_with_train": null,
        "min_text_length": 72,
        "average_text_length": 431.6463147222222,
        "max_text_length": 1015,
        "unique_text": 3600000,
        "unique_labels": 2,
        "labels": {
            "1": {
                "count": 1800000
            },
            "0": {
                "count": 1800000
            }
        }
    }
}

This dataset card was automatically generated using MTEB