Datasets:
mteb
/

Modalities:
Text
Formats:
parquet
ArXiv:
Libraries:
Datasets
pandas
License:
File size: 10,569 Bytes
4718185
56a1db8
 
 
ebd6fca
a1ab75b
56a1db8
a1ab75b
 
ebd6fca
a1ab75b
 
ebd6fca
56a1db8
a1ab75b
 
 
56a1db8
 
73d73e1
56a1db8
a1ab75b
 
56a1db8
 
 
8953903
7f0d0f4
 
 
 
 
 
 
 
 
 
 
 
 
 
12c6197
 
 
 
 
 
 
 
 
 
 
 
 
 
04c3a47
 
 
 
 
 
 
 
 
 
 
 
 
 
222e55a
 
 
 
 
 
 
 
 
 
 
 
 
 
cdcb469
 
 
 
 
 
 
 
 
 
 
 
 
 
0434992
 
 
 
 
 
 
 
 
 
 
 
 
 
1478939
 
 
 
 
 
 
 
 
 
 
 
 
 
3b1e4df
 
 
 
 
 
 
 
 
 
 
 
 
 
cdcb469
8953903
 
 
 
 
 
 
 
 
 
 
 
 
37e90db
 
 
 
 
 
 
 
 
 
 
 
 
 
ad5ff13
 
 
 
 
 
 
 
 
 
 
 
 
 
e157746
 
 
 
 
 
 
 
 
 
 
 
 
 
44c1f83
 
 
 
 
 
 
 
 
 
 
 
 
 
8953903
7f0d0f4
 
 
 
12c6197
 
 
 
04c3a47
 
 
 
222e55a
 
 
 
cdcb469
 
 
 
0434992
 
 
 
1478939
 
 
 
3b1e4df
 
 
 
8953903
 
 
 
37e90db
 
 
 
ad5ff13
 
 
 
e157746
 
 
 
44c1f83
 
 
 
4718185
7b46946
9868284
 
 
 
 
 
56a1db8
7b46946
56a1db8
ebd6fca
 
 
 
 
24df91a
 
 
 
9868284
 
24df91a
 
 
 
 
 
 
 
 
 
650846d
9868284
60ad458
130b38c
56a1db8
24df91a
 
7b46946
ebd6fca
56a1db8
ebd6fca
 
 
 
 
 
 
 
24df91a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
130b38c
 
 
9868284
 
 
 
 
 
 
 
 
 
 
 
 
130b38c
228d97f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9868284
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
---
annotations_creators:
- expert-annotated
language:
- asm
- ben
- bho
- ell
- guj
- kan
- mar
- ory
- pan
- rus
- san
- tam
- tur
license: unknown
multilinguality: translated
task_categories:
- text-classification
task_ids:
- semantic-similarity-classification
tags:
- mteb
- text
dataset_info:
- config_name: assamese
  features:
  - name: sentence1
    dtype: string
  - name: sentence2
    dtype: string
  - name: labels
    dtype: int64
  splits:
  - name: test
    num_bytes: 565556
    num_examples: 1365
  download_size: 230705
  dataset_size: 565556
- config_name: bengali
  features:
  - name: sentence1
    dtype: string
  - name: sentence2
    dtype: string
  - name: labels
    dtype: int64
  splits:
  - name: test
    num_bytes: 567227
    num_examples: 1365
  download_size: 223053
  dataset_size: 567227
- config_name: bhojpuri
  features:
  - name: sentence1
    dtype: string
  - name: sentence2
    dtype: string
  - name: labels
    dtype: int64
  splits:
  - name: test
    num_bytes: 549145
    num_examples: 1365
  download_size: 220031
  dataset_size: 549145
- config_name: greek
  features:
  - name: sentence1
    dtype: string
  - name: sentence2
    dtype: string
  - name: labels
    dtype: int64
  splits:
  - name: test
    num_bytes: 446843
    num_examples: 1365
  download_size: 224614
  dataset_size: 446843
- config_name: gujrati
  features:
  - name: sentence1
    dtype: string
  - name: sentence2
    dtype: string
  - name: labels
    dtype: int64
  splits:
  - name: test
    num_bytes: 550823
    num_examples: 1365
  download_size: 224504
  dataset_size: 550823
- config_name: kannada
  features:
  - name: sentence1
    dtype: string
  - name: sentence2
    dtype: string
  - name: labels
    dtype: int64
  splits:
  - name: test
    num_bytes: 622208
    num_examples: 1365
  download_size: 239158
  dataset_size: 622208
- config_name: marathi
  features:
  - name: sentence1
    dtype: string
  - name: sentence2
    dtype: string
  - name: labels
    dtype: int64
  splits:
  - name: test
    num_bytes: 569028
    num_examples: 1365
  download_size: 225578
  dataset_size: 569028
- config_name: odiya
  features:
  - name: sentence1
    dtype: string
  - name: sentence2
    dtype: string
  - name: labels
    dtype: int64
  splits:
  - name: test
    num_bytes: 571151
    num_examples: 1365
  download_size: 228006
  dataset_size: 571151
- config_name: punjabi
  features:
  - name: sentence1
    dtype: string
  - name: sentence2
    dtype: string
  - name: labels
    dtype: int64
  splits:
  - name: test
    num_bytes: 565812
    num_examples: 1365
  download_size: 224326
  dataset_size: 565812
- config_name: russian
  features:
  - name: sentence1
    dtype: string
  - name: sentence2
    dtype: string
  - name: labels
    dtype: int64
  splits:
  - name: test
    num_bytes: 418863
    num_examples: 1365
  download_size: 213532
  dataset_size: 418863
- config_name: sanskrit
  features:
  - name: sentence1
    dtype: string
  - name: sentence2
    dtype: string
  - name: labels
    dtype: int64
  splits:
  - name: test
    num_bytes: 598335
    num_examples: 1365
  download_size: 235984
  dataset_size: 598335
- config_name: tamil
  features:
  - name: sentence1
    dtype: string
  - name: sentence2
    dtype: string
  - name: labels
    dtype: int64
  splits:
  - name: test
    num_bytes: 676943
    num_examples: 1365
  download_size: 245022
  dataset_size: 676943
- config_name: turkish
  features:
  - name: sentence1
    dtype: string
  - name: sentence2
    dtype: string
  - name: labels
    dtype: int64
  splits:
  - name: test
    num_bytes: 246707
    num_examples: 1365
  download_size: 156292
  dataset_size: 246707
configs:
- config_name: assamese
  data_files:
  - split: test
    path: assamese/test-*
- config_name: bengali
  data_files:
  - split: test
    path: bengali/test-*
- config_name: bhojpuri
  data_files:
  - split: test
    path: bhojpuri/test-*
- config_name: greek
  data_files:
  - split: test
    path: greek/test-*
- config_name: gujrati
  data_files:
  - split: test
    path: gujrati/test-*
- config_name: kannada
  data_files:
  - split: test
    path: kannada/test-*
- config_name: marathi
  data_files:
  - split: test
    path: marathi/test-*
- config_name: odiya
  data_files:
  - split: test
    path: odiya/test-*
- config_name: punjabi
  data_files:
  - split: test
    path: punjabi/test-*
- config_name: russian
  data_files:
  - split: test
    path: russian/test-*
- config_name: sanskrit
  data_files:
  - split: test
    path: sanskrit/test-*
- config_name: tamil
  data_files:
  - split: test
    path: tamil/test-*
- config_name: turkish
  data_files:
  - split: test
    path: turkish/test-*
---
<!-- adapted from https://github.com/huggingface/huggingface_hub/blob/v0.30.2/src/huggingface_hub/templates/datasetcard_template.md -->

<div align="center" style="padding: 40px 20px; background-color: white; border-radius: 12px; box-shadow: 0 2px 10px rgba(0, 0, 0, 0.05); max-width: 600px; margin: 0 auto;">
  <h1 style="font-size: 3.5rem; color: #1a1a1a; margin: 0 0 20px 0; letter-spacing: 2px; font-weight: 700;">XNLIV2</h1>
  <div style="font-size: 1.5rem; color: #4a4a4a; margin-bottom: 5px; font-weight: 300;">An <a href="https://github.com/embeddings-benchmark/mteb" style="color: #2c5282; font-weight: 600; text-decoration: none;" onmouseover="this.style.textDecoration='underline'" onmouseout="this.style.textDecoration='none'">MTEB</a> dataset</div>
  <div style="font-size: 0.9rem; color: #2c5282; margin-top: 10px;">Massive Text Embedding Benchmark</div>
</div>

This is subset of 'XNLI 2.0: Improving XNLI dataset and performance on Cross Lingual Understanding' with languages that were not part of the original XNLI plus three (verified) languages that are not strongly covered in MTEB

|               |                                             |
|---------------|---------------------------------------------|
| Task category | t2t                              |
| Domains       | Non-fiction, Fiction, Government, Written                               |
| Reference     | https://arxiv.org/pdf/2301.06527 |


## How to evaluate on this task

You can evaluate an embedding model on this dataset using the following code:

```python
import mteb

task = mteb.get_tasks(["XNLIV2"])
evaluator = mteb.MTEB(task)

model = mteb.get_model(YOUR_MODEL)
evaluator.run(model)
```

<!-- Datasets want link to arxiv in readme to autolink dataset with paper -->
To learn more about how to run models on `mteb` task check out the [GitHub repitory](https://github.com/embeddings-benchmark/mteb). 

## Citation

If you use this dataset, please cite the dataset as well as [mteb](https://github.com/embeddings-benchmark/mteb), as this dataset likely includes additional processing as a part of the [MMTEB Contribution](https://github.com/embeddings-benchmark/mteb/tree/main/docs/mmteb).

```bibtex

@inproceedings{upadhyay2023xnli,
  author = {Upadhyay, Ankit Kumar and Upadhya, Harsit Kumar},
  booktitle = {2023 IEEE 8th International Conference for Convergence in Technology (I2CT)},
  organization = {IEEE},
  pages = {1--6},
  title = {XNLI 2.0: Improving XNLI dataset and performance on Cross Lingual Understanding (XLU)},
  year = {2023},
}


@article{enevoldsen2025mmtebmassivemultilingualtext,
  title={MMTEB: Massive Multilingual Text Embedding Benchmark},
  author={Kenneth Enevoldsen and Isaac Chung and Imene Kerboua and Márton Kardos and Ashwin Mathur and David Stap and Jay Gala and Wissam Siblini and Dominik Krzemiński and Genta Indra Winata and Saba Sturua and Saiteja Utpala and Mathieu Ciancone and Marion Schaeffer and Gabriel Sequeira and Diganta Misra and Shreeya Dhakal and Jonathan Rystrøm and Roman Solomatin and Ömer Çağatan and Akash Kundu and Martin Bernstorff and Shitao Xiao and Akshita Sukhlecha and Bhavish Pahwa and Rafał Poświata and Kranthi Kiran GV and Shawon Ashraf and Daniel Auras and Björn Plüster and Jan Philipp Harries and Loïc Magne and Isabelle Mohr and Mariya Hendriksen and Dawei Zhu and Hippolyte Gisserot-Boukhlef and Tom Aarsen and Jan Kostkan and Konrad Wojtasik and Taemin Lee and Marek Šuppa and Crystina Zhang and Roberta Rocca and Mohammed Hamdy and Andrianos Michail and John Yang and Manuel Faysse and Aleksei Vatolin and Nandan Thakur and Manan Dey and Dipam Vasani and Pranjal Chitale and Simone Tedeschi and Nguyen Tai and Artem Snegirev and Michael Günther and Mengzhou Xia and Weijia Shi and Xing Han Lù and Jordan Clive and Gayatri Krishnakumar and Anna Maksimova and Silvan Wehrli and Maria Tikhonova and Henil Panchal and Aleksandr Abramov and Malte Ostendorff and Zheng Liu and Simon Clematide and Lester James Miranda and Alena Fenogenova and Guangyu Song and Ruqiya Bin Safi and Wen-Ding Li and Alessia Borghini and Federico Cassano and Hongjin Su and Jimmy Lin and Howard Yen and Lasse Hansen and Sara Hooker and Chenghao Xiao and Vaibhav Adlakha and Orion Weller and Siva Reddy and Niklas Muennighoff},
  publisher = {arXiv},
  journal={arXiv preprint arXiv:2502.13595},
  year={2025},
  url={https://arxiv.org/abs/2502.13595},
  doi = {10.48550/arXiv.2502.13595},
}

@article{muennighoff2022mteb,
  author = {Muennighoff, Niklas and Tazi, Nouamane and Magne, Lo{\"\i}c and Reimers, Nils},
  title = {MTEB: Massive Text Embedding Benchmark},
  publisher = {arXiv},
  journal={arXiv preprint arXiv:2210.07316},
  year = {2022}
  url = {https://arxiv.org/abs/2210.07316},
  doi = {10.48550/ARXIV.2210.07316},
}
```

# Dataset Statistics
<details>
  <summary> Dataset Statistics</summary>

The following code contains the descriptive statistics from the task. These can also be obtained using:

```python
import mteb

task = mteb.get_task("XNLIV2")

desc_stats = task.metadata.descriptive_stats
```

```json
{
    "test": {
        "num_samples": 17745,
        "number_of_characters": 2778287,
        "unique_pairs": 17745,
        "min_sentence1_length": 5,
        "avg_sentence1_length": 105.99329388560157,
        "max_sentence1_length": 339,
        "unique_sentence1": 14234,
        "min_sentence2_length": 8,
        "avg_sentence2_length": 50.57402085094393,
        "max_sentence2_length": 162,
        "unique_sentence2": 17745,
        "unique_labels": 2,
        "labels": {
            "0": {
                "count": 8879
            },
            "1": {
                "count": 8866
            }
        }
    }
}
```

</details>

---
*This dataset card was automatically generated using [MTEB](https://github.com/embeddings-benchmark/mteb)*