Datasets:
Tasks:
Text Classification
Modalities:
Text
Formats:
parquet
Sub-tasks:
semantic-similarity-classification
Size:
10K - 100K
ArXiv:
License:
File size: 10,569 Bytes
4718185 56a1db8 ebd6fca a1ab75b 56a1db8 a1ab75b ebd6fca a1ab75b ebd6fca 56a1db8 a1ab75b 56a1db8 73d73e1 56a1db8 a1ab75b 56a1db8 8953903 7f0d0f4 12c6197 04c3a47 222e55a cdcb469 0434992 1478939 3b1e4df cdcb469 8953903 37e90db ad5ff13 e157746 44c1f83 8953903 7f0d0f4 12c6197 04c3a47 222e55a cdcb469 0434992 1478939 3b1e4df 8953903 37e90db ad5ff13 e157746 44c1f83 4718185 7b46946 9868284 56a1db8 7b46946 56a1db8 ebd6fca 24df91a 9868284 24df91a 650846d 9868284 60ad458 130b38c 56a1db8 24df91a 7b46946 ebd6fca 56a1db8 ebd6fca 24df91a 130b38c 9868284 130b38c 228d97f 9868284 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 |
---
annotations_creators:
- expert-annotated
language:
- asm
- ben
- bho
- ell
- guj
- kan
- mar
- ory
- pan
- rus
- san
- tam
- tur
license: unknown
multilinguality: translated
task_categories:
- text-classification
task_ids:
- semantic-similarity-classification
tags:
- mteb
- text
dataset_info:
- config_name: assamese
features:
- name: sentence1
dtype: string
- name: sentence2
dtype: string
- name: labels
dtype: int64
splits:
- name: test
num_bytes: 565556
num_examples: 1365
download_size: 230705
dataset_size: 565556
- config_name: bengali
features:
- name: sentence1
dtype: string
- name: sentence2
dtype: string
- name: labels
dtype: int64
splits:
- name: test
num_bytes: 567227
num_examples: 1365
download_size: 223053
dataset_size: 567227
- config_name: bhojpuri
features:
- name: sentence1
dtype: string
- name: sentence2
dtype: string
- name: labels
dtype: int64
splits:
- name: test
num_bytes: 549145
num_examples: 1365
download_size: 220031
dataset_size: 549145
- config_name: greek
features:
- name: sentence1
dtype: string
- name: sentence2
dtype: string
- name: labels
dtype: int64
splits:
- name: test
num_bytes: 446843
num_examples: 1365
download_size: 224614
dataset_size: 446843
- config_name: gujrati
features:
- name: sentence1
dtype: string
- name: sentence2
dtype: string
- name: labels
dtype: int64
splits:
- name: test
num_bytes: 550823
num_examples: 1365
download_size: 224504
dataset_size: 550823
- config_name: kannada
features:
- name: sentence1
dtype: string
- name: sentence2
dtype: string
- name: labels
dtype: int64
splits:
- name: test
num_bytes: 622208
num_examples: 1365
download_size: 239158
dataset_size: 622208
- config_name: marathi
features:
- name: sentence1
dtype: string
- name: sentence2
dtype: string
- name: labels
dtype: int64
splits:
- name: test
num_bytes: 569028
num_examples: 1365
download_size: 225578
dataset_size: 569028
- config_name: odiya
features:
- name: sentence1
dtype: string
- name: sentence2
dtype: string
- name: labels
dtype: int64
splits:
- name: test
num_bytes: 571151
num_examples: 1365
download_size: 228006
dataset_size: 571151
- config_name: punjabi
features:
- name: sentence1
dtype: string
- name: sentence2
dtype: string
- name: labels
dtype: int64
splits:
- name: test
num_bytes: 565812
num_examples: 1365
download_size: 224326
dataset_size: 565812
- config_name: russian
features:
- name: sentence1
dtype: string
- name: sentence2
dtype: string
- name: labels
dtype: int64
splits:
- name: test
num_bytes: 418863
num_examples: 1365
download_size: 213532
dataset_size: 418863
- config_name: sanskrit
features:
- name: sentence1
dtype: string
- name: sentence2
dtype: string
- name: labels
dtype: int64
splits:
- name: test
num_bytes: 598335
num_examples: 1365
download_size: 235984
dataset_size: 598335
- config_name: tamil
features:
- name: sentence1
dtype: string
- name: sentence2
dtype: string
- name: labels
dtype: int64
splits:
- name: test
num_bytes: 676943
num_examples: 1365
download_size: 245022
dataset_size: 676943
- config_name: turkish
features:
- name: sentence1
dtype: string
- name: sentence2
dtype: string
- name: labels
dtype: int64
splits:
- name: test
num_bytes: 246707
num_examples: 1365
download_size: 156292
dataset_size: 246707
configs:
- config_name: assamese
data_files:
- split: test
path: assamese/test-*
- config_name: bengali
data_files:
- split: test
path: bengali/test-*
- config_name: bhojpuri
data_files:
- split: test
path: bhojpuri/test-*
- config_name: greek
data_files:
- split: test
path: greek/test-*
- config_name: gujrati
data_files:
- split: test
path: gujrati/test-*
- config_name: kannada
data_files:
- split: test
path: kannada/test-*
- config_name: marathi
data_files:
- split: test
path: marathi/test-*
- config_name: odiya
data_files:
- split: test
path: odiya/test-*
- config_name: punjabi
data_files:
- split: test
path: punjabi/test-*
- config_name: russian
data_files:
- split: test
path: russian/test-*
- config_name: sanskrit
data_files:
- split: test
path: sanskrit/test-*
- config_name: tamil
data_files:
- split: test
path: tamil/test-*
- config_name: turkish
data_files:
- split: test
path: turkish/test-*
---
<!-- adapted from https://github.com/huggingface/huggingface_hub/blob/v0.30.2/src/huggingface_hub/templates/datasetcard_template.md -->
<div align="center" style="padding: 40px 20px; background-color: white; border-radius: 12px; box-shadow: 0 2px 10px rgba(0, 0, 0, 0.05); max-width: 600px; margin: 0 auto;">
<h1 style="font-size: 3.5rem; color: #1a1a1a; margin: 0 0 20px 0; letter-spacing: 2px; font-weight: 700;">XNLIV2</h1>
<div style="font-size: 1.5rem; color: #4a4a4a; margin-bottom: 5px; font-weight: 300;">An <a href="https://github.com/embeddings-benchmark/mteb" style="color: #2c5282; font-weight: 600; text-decoration: none;" onmouseover="this.style.textDecoration='underline'" onmouseout="this.style.textDecoration='none'">MTEB</a> dataset</div>
<div style="font-size: 0.9rem; color: #2c5282; margin-top: 10px;">Massive Text Embedding Benchmark</div>
</div>
This is subset of 'XNLI 2.0: Improving XNLI dataset and performance on Cross Lingual Understanding' with languages that were not part of the original XNLI plus three (verified) languages that are not strongly covered in MTEB
| | |
|---------------|---------------------------------------------|
| Task category | t2t |
| Domains | Non-fiction, Fiction, Government, Written |
| Reference | https://arxiv.org/pdf/2301.06527 |
## How to evaluate on this task
You can evaluate an embedding model on this dataset using the following code:
```python
import mteb
task = mteb.get_tasks(["XNLIV2"])
evaluator = mteb.MTEB(task)
model = mteb.get_model(YOUR_MODEL)
evaluator.run(model)
```
<!-- Datasets want link to arxiv in readme to autolink dataset with paper -->
To learn more about how to run models on `mteb` task check out the [GitHub repitory](https://github.com/embeddings-benchmark/mteb).
## Citation
If you use this dataset, please cite the dataset as well as [mteb](https://github.com/embeddings-benchmark/mteb), as this dataset likely includes additional processing as a part of the [MMTEB Contribution](https://github.com/embeddings-benchmark/mteb/tree/main/docs/mmteb).
```bibtex
@inproceedings{upadhyay2023xnli,
author = {Upadhyay, Ankit Kumar and Upadhya, Harsit Kumar},
booktitle = {2023 IEEE 8th International Conference for Convergence in Technology (I2CT)},
organization = {IEEE},
pages = {1--6},
title = {XNLI 2.0: Improving XNLI dataset and performance on Cross Lingual Understanding (XLU)},
year = {2023},
}
@article{enevoldsen2025mmtebmassivemultilingualtext,
title={MMTEB: Massive Multilingual Text Embedding Benchmark},
author={Kenneth Enevoldsen and Isaac Chung and Imene Kerboua and Márton Kardos and Ashwin Mathur and David Stap and Jay Gala and Wissam Siblini and Dominik Krzemiński and Genta Indra Winata and Saba Sturua and Saiteja Utpala and Mathieu Ciancone and Marion Schaeffer and Gabriel Sequeira and Diganta Misra and Shreeya Dhakal and Jonathan Rystrøm and Roman Solomatin and Ömer Çağatan and Akash Kundu and Martin Bernstorff and Shitao Xiao and Akshita Sukhlecha and Bhavish Pahwa and Rafał Poświata and Kranthi Kiran GV and Shawon Ashraf and Daniel Auras and Björn Plüster and Jan Philipp Harries and Loïc Magne and Isabelle Mohr and Mariya Hendriksen and Dawei Zhu and Hippolyte Gisserot-Boukhlef and Tom Aarsen and Jan Kostkan and Konrad Wojtasik and Taemin Lee and Marek Šuppa and Crystina Zhang and Roberta Rocca and Mohammed Hamdy and Andrianos Michail and John Yang and Manuel Faysse and Aleksei Vatolin and Nandan Thakur and Manan Dey and Dipam Vasani and Pranjal Chitale and Simone Tedeschi and Nguyen Tai and Artem Snegirev and Michael Günther and Mengzhou Xia and Weijia Shi and Xing Han Lù and Jordan Clive and Gayatri Krishnakumar and Anna Maksimova and Silvan Wehrli and Maria Tikhonova and Henil Panchal and Aleksandr Abramov and Malte Ostendorff and Zheng Liu and Simon Clematide and Lester James Miranda and Alena Fenogenova and Guangyu Song and Ruqiya Bin Safi and Wen-Ding Li and Alessia Borghini and Federico Cassano and Hongjin Su and Jimmy Lin and Howard Yen and Lasse Hansen and Sara Hooker and Chenghao Xiao and Vaibhav Adlakha and Orion Weller and Siva Reddy and Niklas Muennighoff},
publisher = {arXiv},
journal={arXiv preprint arXiv:2502.13595},
year={2025},
url={https://arxiv.org/abs/2502.13595},
doi = {10.48550/arXiv.2502.13595},
}
@article{muennighoff2022mteb,
author = {Muennighoff, Niklas and Tazi, Nouamane and Magne, Lo{\"\i}c and Reimers, Nils},
title = {MTEB: Massive Text Embedding Benchmark},
publisher = {arXiv},
journal={arXiv preprint arXiv:2210.07316},
year = {2022}
url = {https://arxiv.org/abs/2210.07316},
doi = {10.48550/ARXIV.2210.07316},
}
```
# Dataset Statistics
<details>
<summary> Dataset Statistics</summary>
The following code contains the descriptive statistics from the task. These can also be obtained using:
```python
import mteb
task = mteb.get_task("XNLIV2")
desc_stats = task.metadata.descriptive_stats
```
```json
{
"test": {
"num_samples": 17745,
"number_of_characters": 2778287,
"unique_pairs": 17745,
"min_sentence1_length": 5,
"avg_sentence1_length": 105.99329388560157,
"max_sentence1_length": 339,
"unique_sentence1": 14234,
"min_sentence2_length": 8,
"avg_sentence2_length": 50.57402085094393,
"max_sentence2_length": 162,
"unique_sentence2": 17745,
"unique_labels": 2,
"labels": {
"0": {
"count": 8879
},
"1": {
"count": 8866
}
}
}
}
```
</details>
---
*This dataset card was automatically generated using [MTEB](https://github.com/embeddings-benchmark/mteb)* |